Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (1): 44-54    DOI: 10.11901/1005.3093.2024.141
ARTICLES Current Issue | Archive | Adv Search |
Effect of Cold Spraying Temperature on Structure and Tribological Properties of Ni-Ti3AlC2 Composite Coating
HAN Heng1, LI Hongqiao1, LI Peng2, MA Guozheng3, GUO Weiling3(), LIU Ming3
1 School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang 110000, China
2 School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
3 National Key Laboratory of Remanufacturing, Army Armored Forces Institute, Beijing 100072, China
Cite this article: 

HAN Heng, LI Hongqiao, LI Peng, MA Guozheng, GUO Weiling, LIU Ming. Effect of Cold Spraying Temperature on Structure and Tribological Properties of Ni-Ti3AlC2 Composite Coating. Chinese Journal of Materials Research, 2025, 39(1): 44-54.

Download:  HTML  PDF(15988KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to enhance the tribological properties of Al-alloy moving parts, a Ni-Ti3AlC2 composite coating was applied onto the surface of ADC12 Al-alloy using high-pressure cold spraying technology. During the cold spraying process, spraying pressure and temperature are identified as two critical process parameters. In this study, while keeping the spraying pressure constant, the impact of spraying temperature on the microstructure, mechanical properties, and tribological behavior of the Ni-Ti3AlC2 composite coating/ADC12 Al-alloy was assessed. The findings indicate that with an increase in spraying temperature from 500 oC to 700 oC, there is a rise in plastic deformation degree of particles within the Ni-Ti3AlC2 composite coating leading to significantly improved bonding state between particles. This results in a 30% increase in coating bonding strength, a 60% decrease in porosity, a 14% increase in hardness, and a 41.7% reduction in coating wear rate. It is evident that appropriately elevating the spraying temperature may effectively enhance the density, mechanical properties and wear resistance of the coating. For spraying at 700 oC specifically, Ni-Ti3AlC2-700 oC exhibits the densest microstructure with no discernible pores or cracks which signifies superior mechanical properties as well as friction and wear characteristics. This can be attributed to the higher spraying temperature enhanced the striking velocity of composite particles, thereby improving deformability of Ni particles, thus the adhesion between Ni particles and Ti3AlC2 ceramic particles, as well as the adhesion between the coating and substrate may be significant enhanced. As a subsequence, the mechanical properties and frictional behavior of the coating can be substantially improved.

Key words:  surface and interface in the materials      cold spraying      nickel-based ceramic composite coating      microstructure      mechanical property      tribological property     
Received:  01 April 2024     
ZTFLH:  TG174.442  
Fund: National Natural Science Foundation of China(52005511);National Natural Science Foundation of China(52122508);National Natural Science Foundation of China(52130509);Liaoning Provincial Department of Education Project(JYTMS20231519)
Corresponding Authors:  GUO Weiling, Tel: 13488686221, E-mail: guoweiling_426@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.141     OR     https://www.cjmr.org/EN/Y2025/V39/I1/44

Chemical compositionSiFeCuMnMgNiSnZnAl
Content9.6~12≤ 1.3≤ 1.5-3.5≤ 0.5≤ 0.3≤ 0.5≤ 0.3≤ 1.0Bal.
Table 1  Chemical composition of ADC12 aluminum alloy
Fig.1  Morphology and particle size distribution of powder (a) SEM of Ni powder; (b) Ni powder particle size distribution; (c) SEM of Ti3AlC2 powder; (d) Ti3AlC2 powder particle size distribution
SampleSpraying temperatureSpray pressureGasSpraying distance

Powder

feed rate

Spray AngleNumber of gun cyclesGun velocity
1500 oC5 MPaN220 mm3.5 r/min90°12300 mm/s
2600 oC
3700 oC
Table 2  Process parameters of cold spraying Ni-Ti3AlC2 coating
Fig.2  XRD spectra of Ni-Ti3AlC2 composite coatings at different spraying temperatures
Fig.3  Cross-section microstructure of Ni-Ti3AlC2 composite coating prepared at different spraying temperatures (a~c) 500 oC; (d~f) 600 oC; (g~i) 700 oC
Fig.4  Porosity and Ti3AlC2 content of Ni-Ti3AlC2 composite coating prepared at different spraying temperatures (a) Porosity; (b) Ti3AlC2 content retained in the coating
Fig.5  Hardness of Ni-Ti3AlC2 composite coating
Fig.6  Bonding strength of Ni-Ti3AlC2 composite coating at different spraying temperatures
Fig.7  Wear test results of substrate and Ni-Ti3AlC2 composite coating under dry friction conditions
(a) friction and wear curve; (b) wear rate histogram
Fig.8  Three-dimensional morphology and two-dimensional profile of wear marks of aluminum alloy matrix and Ni-Ti3AlC2 composite coating (a) Substrate; (b) 500 ℃; (c) 600 ℃; (d) 700 ℃
Fig.9  Two-dimensional profile of the wear marks of the substrate and Ni-Ti3AlC2 composite coating
Fig.10  Morphology of wear marks of Ni-Ti3AlC2 composite coating (a, b) 500 ℃; (c, d) 600 ℃; (e, f) 700 ℃
1 Ni Y, Dong X F. Analysis on the development and application of automotive aluminum [J]. Automob. Technol. Mater., 2023, (7): 11
倪 炀, 董学锋. 汽车铝发展及应用浅析 [J]. 汽车工艺与材料, 2023, (7): 11
2 Ma G Z, He P F, Wang H D, et al. Promoting bonding strength between internal Al-Si based gradient coating and aluminum alloy cylinder bore by forming homo-epitaxial growth interface [J]. Mater Design., 2023, 227:111764
3 Chen Y F. Research on repair technology of aluminum alloy car body plug welding [D]. Mianyang: Southwest University of Science and Technology, 2019
陈元富. 铝合金汽车车身塞焊修复工艺研究 [D]. 绵阳: 西南科技大学, 2019
4 Wang H J. Preparation and properties of cold sprayed IN718 anti-cavitation coating [D]. Chengdu: Southwest Jiaotong University, 2022
王皓杰. 冷喷涂IN718抗气蚀涂层制备及性能研究 [D]. 成都: 西南交通大学, 2022
5 Chen W Y, Tan H, Cheng J, et al. Research progress and prospect of tribological properties of cold sprayed copper matrix composite coatings [J]. Mater. Rep., 2022, 36: 58
陈文元, 谈 辉, 程 军 等. 冷喷涂铜基复合涂层摩擦学性能的研究进展与展望 [J]. 材料导报, 2022, 36: 58
6 Assadi H, Kreye H, Gartner F, et al. Cold spraying—A materials perspective [J]. Acta Mater., 2016, 116: 382
7 Chen X, Zhou H K, Pi Z M, et al. Deposition behavior and microstructure of cold-sprayed Ni-coated Al particles [J]. Coatings, 2022, 12: 544
8 Xu L, Li J W, Cui C Y, et al. Corrosion behavior and protection mechanism of cold-sprayed Zn15Al alloy coatings in NaCl solution [J]. Chin. J. Mater. Res., 2024, 38(3): 208
徐 龙, 李继文, 崔传禹 等. 冷喷涂Zn15Al合金涂层在NaCl溶液中的腐蚀行为和防护机制 [J]. 材料研究学报, 2024, 38(3): 208
9 Mou H L, Zhao H C, Tian H G, et al. Effects of hBN content and particle size on microstructure, mechanical and tribological properties of NiCr-Cr3C2-hBN coatings [J]. Surf. Coat Technol., 2024, 478: 130330
10 Chen J, Song H, Liu G, et al. Cold Spraying: A new alternative preparation method for nickel-based high-temperature solid-lubrication coating [J]. J. Therm. Spray Technol., 2020, 29: 1892
11 Alino T, C B S, Brajendra M, et al. Subsurface microstructural evolution of high-pressure diecast A365: from cast to cold-sprayed and heat-treated conditions [J]. Metals., 2021, 11: 432
12 Sun W, Bhowmik A, Tan Y W A, et al. Strategy of incorporating Ni-based braze alloy in cold sprayed Inconel 718 coating [J]. Surf. Coat. Technol., 2019, 358: 1006
13 M. W, S. K, A. M, et al. Optimization of ceramic content in nickel-alumina composite coatings obtained by low pressure cold spraying [J]. Surf. Coat Technol., 2021, 405: 126732
14 Li W Y, Zhang Z M, Xu Y X, et al. Research progress of cold sprayed Ni and Ni-based composite coatings: a review [J]. Acta Metall. Sin., 2022, 58: 1
doi: 10.11900/0412.1961.2021.00270
李文亚, 张正茂, 徐雅欣 等. 冷喷涂Ni及镍基复合涂层研究进展 [J]. 金属学报, 2022, 58: 1
doi: 10.11900/0412.1961.2021.00270
15 Stark M L, Smid I, Segall E A, et al. Self-lubricating cold-sprayed coatings utilizing microscale nickel-encapsulated hexagonal boron nitride [J]. Tribol T., 2012, 55: 624
16 Selvakumar A, Perumalraj R, Sudagar J, et al. Nickel-multiwalled carbon nanotube composite coating on aluminum alloy rotor for textile industries [J]. P I Mech. Eng. L-J. Mat., 2016, 230: 319
17 Huang P C, Hou K H, Hong J J, et al. Study of fabrication and wear properties of Ni-SiC composite coatings on A356 aluminum alloy [J]. Wear, 2021, 477: 203772
18 Ning X J, Wang Q S, Yang J Z, et al. Cold-sprayed Ni-cBN coating and its friction and wear properties [J]. New Technol. New Process, 2018, 4: 11
19 Wang Z C, Wang H, Hang H L, et al. Effect of Ta content on high temperature tensile properties of high performance nickel-based powder superalloys [J]. Chin. J. Mater. Res., 2019, 33: 331
王志成, 王 浩, 黄海亮 等. Ta含量对高性能镍基粉末高温合金高温拉伸性能的影响 [J]. 材料研究学报, 2019, 33: 331
doi: 10.11901/1005.3093.2018.494
20 Yang G R, Gao D W, Song W M, et al. Formation mechanism of Ni/WC composite cladding layer on steel surface [J]. Chin. J Mater. Res., 2019, 33: 87
杨贵荣, 高大文, 宋文明 等. 45钢表面Ni/WC复合熔覆层的形成机制 [J]. 材料研究学报, 2019, 33: 87
doi: 10.11901/1005.3093.2018.510
21 Zhang L L, Huang J B, Diao P Y, et al. Microstructure and friction and wear resistance of CuZn35 coating prepared by cold spraying [J]. Surf. Technol., 2023, 52: 172
张龙龙, 黄继波, 刁鹏源 等. 冷喷涂制备CuZn35涂层结构及耐摩擦磨损性能 [J]. 表面技术, 2023, 52: 172
22 Singh S, Raman R K S, Berndt C C, et al. Influence of cold spray parameters on bonding mechanisms: a review [J]. Metals, 2021, 11: 2016
23 Chen W, Yu Y, Tieu K A, et al. Microstructure, mechanical properties and tribological behavior of the low-pressure cold sprayed tin bronze-alumina coating in artificial seawater [J]. Tribol Int., 2020, 142: 105992
24 Zhu Z X, Shi T Z, Chen W Y, et al. Effect of WC-17Co content on microstructure, mechanical properties and tribological behavior of low-pressure cold sprayed tin bronze composite coating [J]. Surf. Coat Technol., 2023, 465: 129589
25 Liang C M. Study on the content and distribution of hard phase in cold-sprayed Al matrix composite coating [D]. Chengdu: Southwest Jiaotong University, 2021
梁春明. 冷喷涂Al基复合涂层中硬质相含量与分布研究 [D]. 成都: 西南交通大学, 2021
26 Wang J L, Wang H M, Li Y J, et al. Pore cracking behavior of cold sprayed Al based composite coating during reciprocating friction [J]. Chin. J. Mater. Res., 2024, 38(7): 481
王金龙, 王慧明, 李应举 等. 在往复摩擦过程中冷喷涂Al基复合涂层孔隙的开裂行为 [J]. 材料研究学报, 2024, 38(7): 481
doi: 10.11901/1005.3093.2023.409
27 Liu H H, Ren Y P, Li T F, et al. Porosity and its control Measures in cold-sprayed deposits [J]. Mater. Protect., 2022, 55: 1
刘晗珲, 任宇鹏, 李铁藩 等. 冷喷涂沉积层中的孔隙及其控制措施 [J]. 材料保护, 2022, 55: 1
28 Han X H, Yao X C, Cao J S, et al. Effect of cold spraying parameters on microstructure and properties of 7050 high strength aluminum alloy axle box body repair layer [J]. Surf. Technol., 2024, 53(5): 194
韩晓辉, 姚小春, 曹金山 等. 冷喷涂参数对7050高强铝合金轴箱体修复层组织与性能的影响 [J]. 表面技术, 2024, 53(5): 194
29 Li Y J, Dong T S, Fu B G, et al. Study of the microstructure and properties of cold sprayed NiCr coating [J]. J. Mater. Eng. Perform., 2021, 30: 9067
30 Zhang T, Cheng B, LI W S, et al. Tribological properties of low pressure cold sprayed nickel base ceramic composite coatings [J]. Surf. Technol., 2021, 50: 203
张 涛, 成 波, 李文生 等. 低压冷喷涂镍基金属陶瓷复合涂层的摩擦学性能研究 [J]. 表面技术, 2021, 50: 203
[1] ZHU Guohao, CHEN Ping, XU Jilei, SUN Huimin. Preparation and Properties of Curd Polyimide Modified by Oligomeric Polyimide[J]. 材料研究学报, 2025, 39(2): 103-112.
[2] YUAN Hongyuan, ZHANG Siqian, WANG Dong, ZHANG Yingjian, MA Li, YU Minghan, ZHANG Haoyu, ZHOU Ge, CHEN Lijia. Effect of Long-term Thermal Exposure on Microstructure Evolution of Interface Thermal Barrier Coating/DZ411 Ni-based Superalloy[J]. 材料研究学报, 2025, 39(2): 113-125.
[3] WANG Na, LI Wenbin, PANG Jianchao, CHEN Lijia, GAO Chong, ZOU Chenglu, ZHANG Hui, LI Shouxin, ZHANG Zhefeng. Tensile Properties and Deformation Mechanism of Additive Manufacturing Superalloy at Different Temperatures[J]. 材料研究学报, 2025, 39(1): 1-10.
[4] MU Chunhao, CHEN Wenge, YU Tianliang, MA Jiangjiang. Interface Microstructure and Properties of TA2/Q345 Composite Pipes Prepared by Hot Assembling and Diffusion Welding[J]. 材料研究学报, 2025, 39(1): 35-43.
[5] LI Peiyue, ZHANG Minghui, SUN Wentao, BAO Zhihao, GAO Qi, WANG Yanzhi, NIU Long. Effect of Ce and La on Microstructure and Mechanical Properties of Al-Zn Alloy[J]. 材料研究学报, 2024, 38(9): 651-658.
[6] WANG Xiaofeng, TAN Wei, FENG Guangming, LIU Jibo, LIU Xianbin, LU Han. Effect of Fe-rich Phase on Mechanical Properties of Al-Mg-Si Alloy[J]. 材料研究学报, 2024, 38(9): 701-710.
[7] HUANG Di, NIU Yunsong, LI Shuai, DONG Zhihong, BAO Zebin, ZHU Shenglong. Thermal Cycling and Flame Thermal Shocking Failure Mechanism of Tetragonal Yttria-stabilized Zirconia TBCs Prepared on High Temperature Alloys by Suspension Plasma Spraying[J]. 材料研究学报, 2024, 38(9): 691-700.
[8] LOU Weidong, ZHAO Haidong, WANG Guo. Softening Behavior of H13 Steel by Thermal Cycling between Molten ADC12 Al-alloy and Spray Cooling Chamber[J]. 材料研究学报, 2024, 38(8): 593-604.
[9] PENG Wenfei, HUANG Qiaodong, Moliar Oleksandr, DONG Chaoqi, WANG Xiaofeng. Effect of Heat Treatment on Mechanical Properties of a Novel Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr Alloy[J]. 材料研究学报, 2024, 38(7): 519-528.
[10] WANG Lijia, XU Junyi, HU Li, MIAO Tianhu, ZHAN Sha. Effect of Cryogenic Treatment on Mechanical Behavior of AZ31 Mg Alloy Sheet with Bimodal Non-basal Texture at Room Temperature[J]. 材料研究学报, 2024, 38(7): 499-507.
[11] WANG Jun, WANG Xuanli, LIU Shuang, SONG Rui, SONG Xiwen. Effect of Mn Doping on Microstructure and Thermal Conductivity of (Y0.4Er0.6)3Al5O12 Ceramics Material for Thermal Barrier Coating[J]. 材料研究学报, 2024, 38(6): 463-470.
[12] LI Yuanyuan, LIANG Jian, XIONG Ziliu, MIAO Bin, TIAN Xiugang, QI Jianjun, ZHENG Shijian. Influence of Alloying Elements on Interfacial Layer- and Galvanized Layer-Structure of New Hot-dip Galvanized Dual-phase Steel[J]. 材料研究学报, 2024, 38(6): 446-452.
[13] BIAN Pengbo, HAN Xiuzhu, ZHANG Junfan, ZHU Shize, XIAO Bolv, MA Zongyi. Effect of Aluminum Powder Size and Temperature on Mechanical Properties of Hot Pressed 15%SiC/2009Al Composite[J]. 材料研究学报, 2024, 38(6): 401-409.
[14] ZHANG Jia, GAO Minghao, LUAN Shengjia, XU Na, CHANG Hui, DENG Yuting, HOU Wanliang, CHANG Xinchun. Effect of Feedstock Powders on Microstructure and Properties of CoNiCrAlY Coatings[J]. 材料研究学报, 2024, 38(5): 347-355.
[15] WU Yingming, JIANG Keda, LIU Shengdan, FAN Shitong, QIN Qiuhui, LI Jun. Hot Compression Deformation Behavior of 6013 Aluminum Alloy by Low lnZ[J]. 材料研究学报, 2024, 38(5): 337-346.
No Suggested Reading articles found!