|
|
Preparation Process and Reaction Mechanism of Silicon Carbide Absorbing Materials by In-situ Reaction Method at High Temperature |
CUI Sikai1, FU Guangyan1( ), LIN Lihai2, YAN Yukun2, LI Chusen2( ) |
1 School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China 2 Shenyang National Research Center for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
CUI Sikai, FU Guangyan, LIN Lihai, YAN Yukun, LI Chusen. Preparation Process and Reaction Mechanism of Silicon Carbide Absorbing Materials by In-situ Reaction Method at High Temperature. Chinese Journal of Materials Research, 2024, 38(9): 659-668.
|
Abstract Silicon carbide (SiC) as a kind of high temperature absorbing materials has great application potential, but its application range is limited due to high preparation cost. Herein, the SiC absorbing materials by in-situ reaction of pyrolytic carbon and silicon powder were prepared in vacuum at 1800oC, 2000oC and 2200oC respectively, aiming to clarifying the relevant reaction mechanism so that to search the way for saving preparation cost. The microstructure, phase composition and electromagnetic properties of the three kinds of SiC materials were assessed. The results show that during the in-situ reaction of SiC preparation, the β-phase SiC with 3C crystallographic structure is formed at 1800oC, while at 2000oC the β-phase SiC begins to transform into α-phase SiC with 6H crystallographic structure via evaporation and condensation processes. With the increase of the reaction temperature, the degree of phase trasformation reaction was gradually intensified. Spontaneously, the proportion of α phase SiC also increases gradually, and the dielectric loss ability of the corresponding SiC materials to electromagnetic waves is gradually weakened, the impedance matching performance is gradually improved. In brief, the prepared SiC material presents appropriate comprehensive performance of dielectric loss and impedance matching when the preparation temperature is set above ≥ 2000oC, suitable for use as a wave absorbing material. The results show that it is feasible to prepare SiC absorbing materials with low preparation cost by in-situ reaction method.
|
Received: 24 November 2023
|
|
Corresponding Authors:
LI Chusen, Tel: 13889306569, E-mail: csli@imr.ac.cn FU Guangyan, Tel: 13504997591, E-mail: Fu_guangyan@126.com
|
1 |
Guo Y, Zhang X F, Chen M, et al. Research progress of MAX phase high temperature absorbing materials [J]. China Powder Sci. Technol., 2021, 27(5): 58
|
|
郭 阳, 张雪峰, 陈 敏 等. MAX相高温吸波材料的研究展 [J]. 中国粉体技术, 2021, 27(5): 58
|
2 |
Li M, Yin X W, Zheng G P, et al. High-temperature dielectric and microwave absorption properties of Si3N4-SiC/SiO2 composite ceramics [J]. J. Mater. Sci., 2015, 50(3): 1478
|
3 |
Sang J H. Low-Observable Technologies of Aircraft [M]. Beijing: Aviation Industry Press, 2013
|
|
桑建华. 飞行器隐身技术 [M]. 北京: 航空工业出版, 2013
|
4 |
Yang M L. Research on micro-structure adjustment and microwave absorption properties of carbon-based composite materials [D]. Harbin: Harbin Institute of Technology, 2020
|
|
杨明龙. 碳基复合材料的微结构调控及其电磁波吸收性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2020
|
5 |
Wang J. Study on the properties of polysiloxane Pyrolysis CNTs/Si-O-C high temperature structural absorbing materials [D]. Xi'an: Xi'an University of architecture and technology, 2020
|
|
王 晶. 聚硅氧烷热解CNTs/Si-O-C耐高温结构吸波材料性能研究 [D]. 西安: 西安建筑科技大学, 2020
|
6 |
Wang Y F, Zhu L, Han L, et al. Research status and development trend of electromagnetic absorbing materials [J]. Acta Mater. Compositae Sin., 2023, 40(1): 1
|
|
王一帆, 朱 琳, 韩 露 等. 电磁吸波材料的研究现状与发展趋势 [J]. 复合材料学报, 2023, 40(1): 1
|
7 |
Xing Y M, Yang T, Wang E H, et al. Research progress of SiC composite microwave absorbing materials [J]. Acta Mater. Compositae Sin., 2024, 41
|
|
邢原铭, 杨 涛, 王恩会 等. SiC复合吸波材料的研究进展 [J]. 复合材料学报, 2024, 41
|
8 |
Liang C Y, Wang Z J. Research progress of high temperature microwave absorption materials [J]. J. Aeronaut. Mater., 2018, 38(3): 3
|
|
梁彩云, 王志江. 耐高温吸波材料的研究进展 [J]. 航空材料学报, 2018, 38(3): 3
|
9 |
Zhang M, Li Z, Wang, T, et al. Preparation and electromagnetic wave absorption performance of Fe3Si/SiC@SiO2 nanocomposi-tes [J]. Chem. Eng. J., 362: 619
|
10 |
Wang W C, Liu G, Wang L Y, et al. Electromagnetic properties of coaxial core-shell CNTs@SiC prepared by chemical vapor deposition [J]. Rare Met. Mater. Eng., 2022, 51(10): 3744
|
|
王伟超, 刘 顾, 汪刘应 等. 化学气相沉积法制备同轴核壳结构CNTs@SiC的电磁特性研究 [J]. 稀有金属材料与工程, 2022, 51(10): 3744
|
11 |
Doorbar P J, Kyle-Henney S. Development of continuously reinforced metal matrix composites for aerospace applications [J]. Compr. Compos. Mater. II., 2018, 4: 439
|
12 |
Durodola J F, Fellows N, Winfield P, et al. Continuously reinforced metal matrix composites [J]. Mater. Sci. Eng. C., 2017, 3: 717
|
13 |
Wan M J, Li H, Li S Q, et al. Investigation on the influence of SiCf/TC17 composites preparation method on growth kinetics of interfacial reactive layer [J]. J. Aeronaut. Mater., 2023, 43(4): 68
|
|
王敏涓, 李 虎, 李四清 等. SiCf/TC17复合材料制备方法对界面反应层生长动力学的影响 [J]. 航空材料学报, 2023, 43(4): 68
doi: 10.11868/j.issn.1005-5053.2022.000213
|
14 |
Lui X Y, Wang F, Gao S T, et al. Preparation of C/Zr0.5Hf0.5C-SiC composite by PIP process its microstructure and flexural proper-ties [J]. J. Mater. Eng., 2023, 51(8): 155
|
|
刘星煜, 万 帆, 高世涛 等. PIP工艺制备C/Zr0.5Hf0.5C-SiC复合材料及其微观结构和弯曲性能 [J]. 材料工程, 2023, 51(8): 155
doi: 10.11868/j.issn.1001-4381.2023.000151
|
15 |
Zhu W Z, Zheng Z X, Jiang K, et al. Preparation of SiC powders by carbonthermal reduction method at low temperature [J]. Bull. Chin. Ceram. Soc., 2012, 31(1): 46
|
|
朱文振, 郑治祥, 姜 坤 等. 碳热还原法低温制备碳化硅微粉 [J]. 硅酸盐通报, 2012, 31(1): 46
|
16 |
Zan W Y, Ma B Y. New progress in preparation of high purity SiC micropowder [J]. Refractories., 2021, 55(2): 161
doi: 10.3969/j.issn.1001-1935.2021.02.016
|
|
昝文宇, 马北越. 高纯SiC微粉制备进展 [J]. 耐火材料, 2021, 55(2): 161
doi: 10.3969/j.issn.1001-1935.2021.02.016
|
17 |
He J F, Zhang H J, Ge S T, et al. Research progress in preparation methods of SiC porous ceramics [J]. Refractories., 2020, 54(2): 195
|
|
何江锋, 张海军, 葛胜涛 等. SiC多孔陶瓷制备方法研究进展 [J]. 耐火材料, 2020, 54(2): 195
|
18 |
Gómez-Gómez A, Moyano J J, Román-Manso B, et al. Highly-porous hierarchical SiC structures obtained by filament printing and partial sintering [J]. J. Eur. Ceram. Soc., 2019, 39(4): 688
|
19 |
Zhu W, Fu H, Xu Z F, et al. Fabrication and characterization of carbon fiber reinforced SiC ceramic matrix composites based on 3D printing technology [J]. J. Eur. Ceram. Soc., 2018, 38(14): 4603
|
20 |
Pan Z X, Guo X, Zhang Z B, et al. Research progress on silicon-based ceramic precursors for 3D printing [J]. Aerosp. Mater. Technol., 2022, 52(1): 11
|
|
潘振雪, 郭 香, 张宗波 等. 3D打印用硅基陶瓷前驱体研究进展 [J]. 宇航材料工艺, 2022, 52(1): 11
|
21 |
Wu S, Zhang Y W, Chen M, et al. 3D printing technology microwave absorption metamaterial absorbing honeycomb microwave absorbers ceramic matrix composites absorbers [J]. J. Aeronaut. Mater., 2021, 1(6): 13
|
|
吴 赛, 张有为, 陈 猛 等. 3D打印微波吸收材料研究进展 [J]. 航空材料学报, 2021, 1(6): 13
|
22 |
Srikanth V, Roy R, Graham E K, et al. B x O: Phases Present at High Pressure and Temperature [J]. J. Am. Ceram. Soc., 1991, 74(12): 3145
|
23 |
Lee E J, Bang M J, Kim B S, et al. Coarsening of high purity SiC particles by gas phase transport [J]. Ceram. Int., 2015, 41(10): 14958
|
24 |
Jacobson N S, Lee K N, Fox D S. Reactions of silicon carbide and silicon (Ⅳ) oxide at elevated temperatures [J]. J. Am. Ceram. Soc., 1992, 75(6): 1603
|
25 |
Singhal S C. Thermodynamic analysis of the high temperature stability of silicon nitride and silicon carbide [J]. Ceram. Int., 1976, 11(4): 128
|
26 |
Huang Q W, Gao J Q, Jin Z H. Effect of heat treatment temperature on microstructure and fracture strength of reaction-sintered silicon carbide [J]. Refractories., 2000, 34(1): 17
|
|
黄清伟, 高积强, 金志浩. 热处理温度对反应烧结碳化硅材料组织与性能的影响 [J]. 耐火材料, 2000, 34(1): 17
|
27 |
Sung H W, Lee G W, Yun E S, et al. Novel process for recrystallized silicon carbide through β-α phase transformation [J]. Ceram. Int., 2020, 46: 21920
|
28 |
Bind J M. Phase transformation during hot-pressing of cubic SiC [J]. Mater. Res. Bull., 1978, 13(2): 91
|
29 |
Lilov S K. Thermodynamic analysis of phase transformations at the dissociative evaporation of silicon carbide polytypes [J]. Diam. Relat. Mater., 1995, 4(12): 1331
|
30 |
Wu A H, Cao W B, Li J T, et al. The influences of hot pressing on the microstructure and mechanical properties of SiC ceramic [J]. Powder Metallurgy Technology. 2001, 19(6): 327
|
|
武安华, 曹文斌, 李江涛 等. 热压工艺对SiC陶瓷结构及性能的影响 [J]. 粉末冶金技术, 2001, 19(6): 327
|
31 |
Ying T P, Zhang J, Liu X G, et al. Corncob-derived hierarchical porous carbon/Ni composites for microwave absorbing application [J]. J. Alloys. Compd., 849: 156662
|
32 |
Wei Z H, Peng Y Q, Kang Z W, et al. Progress in polymer-derived silicon carbide ceramics for microwave absorbing applications [J]. J. Ceram., 2021, 42(4): 547
|
|
魏子涵, 彭雨晴, 康治伟 等. 聚碳硅烷转化碳化硅陶瓷吸波性能的研究进展 [J]. 陶瓷学报, 2021, 42(4): 547
|
33 |
Li Y, Zhao Y, Lu X Y, et al. Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole fiber with core-sheath structures for superior microwave absorption [J]. Nano Res., 2016, 9(7): 2034
|
34 |
Fang J Z, Xu C F. Study on three kinds of XRD quantitative analysis methods [J]. Coal Convers., 2010, 33(2): 88
|
|
房俊卓, 徐崇福. 三种X射线物相定量分析方法对比研究 [J]. 煤炭转化, 2010, 33(2): 88
|
35 |
Gong A X, Xu C, An Z, et al. Transmission electron microscopy characterization of grain structure and nanoparticles of 15-15Ti ODS austenitic steel [J]. Mater. Rep., 2024, 38(10): 23010111
|
|
龚翱翔, 徐 驰, 安 瞻 等. 15-15TiODS奥氏体钢晶粒组织与纳米粒子的透射电镜表征 [J]. 材料导报, 2024, 38(10): 23010111
|
36 |
Ju Z C. Synthesis and characterization of silicon carbide and titanium carbide nanomaterials [D]. Jinan: Shandong University, 2008
|
|
鞠治成. 碳化硅和碳化钛纳米材料的制备与表征 [D]. 济南: 山东大学, 2008
|
37 |
Xu W Y, Sun J W, Zhu Y F. Preparation and performance of self-assembled carbon/epoxy composite microwave absorbing coating [J]. Chin. J. Mater. Res., 2023, 37(12): 955
|
|
徐文玉, 孙佳文, 朱曜峰. 自组装碳/环氧树脂复合吸波涂料的制备及性能 [J]. 材料研究学报, 2023, 37(12): 955
|
38 |
Li C S, Qin J Y, Lin L H, et al. Research on the application of pyrolytic carbon-based foam structure to thermal vacuum absorbing box [J]. Spacecraft Environment Engineering., 2023, 40(6): 673
|
|
李处森, 秦家勇, 林立海 等. 热解碳基泡沫结构应用于热真空吸波箱技术研究 [J]. 航天器环境工程, 2023, 40(6): 673
|
39 |
Lin L H. Study on carbon-based foam microwave absorbing material for thermal vacuum absorbing box [D]. Hefei: University of Science and Technology of China, 2023
|
|
林立海. 热真空吸波箱用碳基泡沫吸波材料的研究 [D]. 合肥: 中国科学技术大学, 2023
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|