Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (9): 659-668    DOI: 10.11901/1005.3093.2023.563
ARTICLES Current Issue | Archive | Adv Search |
Preparation Process and Reaction Mechanism of Silicon Carbide Absorbing Materials by In-situ Reaction Method at High Temperature
CUI Sikai1, FU Guangyan1(), LIN Lihai2, YAN Yukun2, LI Chusen2()
1 School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
2 Shenyang National Research Center for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

CUI Sikai, FU Guangyan, LIN Lihai, YAN Yukun, LI Chusen. Preparation Process and Reaction Mechanism of Silicon Carbide Absorbing Materials by In-situ Reaction Method at High Temperature. Chinese Journal of Materials Research, 2024, 38(9): 659-668.

Download:  HTML  PDF(18526KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Silicon carbide (SiC) as a kind of high temperature absorbing materials has great application potential, but its application range is limited due to high preparation cost. Herein, the SiC absorbing materials by in-situ reaction of pyrolytic carbon and silicon powder were prepared in vacuum at 1800oC, 2000oC and 2200oC respectively, aiming to clarifying the relevant reaction mechanism so that to search the way for saving preparation cost. The microstructure, phase composition and electromagnetic properties of the three kinds of SiC materials were assessed. The results show that during the in-situ reaction of SiC preparation, the β-phase SiC with 3C crystallographic structure is formed at 1800oC, while at 2000oC the β-phase SiC begins to transform into α-phase SiC with 6H crystallographic structure via evaporation and condensation processes. With the increase of the reaction temperature, the degree of phase trasformation reaction was gradually intensified. Spontaneously, the proportion of α phase SiC also increases gradually, and the dielectric loss ability of the corresponding SiC materials to electromagnetic waves is gradually weakened, the impedance matching performance is gradually improved. In brief, the prepared SiC material presents appropriate comprehensive performance of dielectric loss and impedance matching when the preparation temperature is set above ≥ 2000oC, suitable for use as a wave absorbing material. The results show that it is feasible to prepare SiC absorbing materials with low preparation cost by in-situ reaction method.

Key words:  composite      silicon carbide microwave absorbing material      sic phase transformation      in-situ reaction      microwave-absorbing ability     
Received:  24 November 2023     
ZTFLH:  TB321  
Corresponding Authors:  LI Chusen, Tel: 13889306569, E-mail: csli@imr.ac.cn
FU Guangyan, Tel: 13504997591, E-mail: Fu_guangyan@126.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.563     OR     https://www.cjmr.org/EN/Y2024/V38/I9/659

Fig.1  Flow chart of in-situ reaction method for preparing silicon carbide materials
Fig.2  SEM characterization of SiC samples (a) SEM image of the T1800 specimen, (b) SEM image of the T2000 specimen, (c) SEM image of the T2200 specimen, (d) typical surface morphology of SiC grain growth at 2000oC
Fig.3  XRD patterns of SiC samples with different reaction sintering temperatures
I(hight)RIR(K)Wi
T2000#β-SiC3851803.5379.7%
T2000#α-SiC369951.3320.3%
T2200#β-SiC2482483.5356.6%
T2200#α-SiC715871.3343.4%
Table 1  Results of quantitative analysis of T2000# and T2200# samples
Fig.4  TEM characterization of T1800 sample (a) low-magnification image of the T1800 specimen, (b) high-magnification image of the T1800 specimen, (c) selected area electron diffraction pattern of figure a, (d) enlarged view of selected area of figure b
Fig.5  TEM characterization of T2000 sample: (a) low-magnification image of the T2000 specimen, (b) high power diagram of T2000 sample, the upper right corner is the FFT diagram of b diagram, (c) selected area electron diffraction pattern of figure a, (d) enlarged view of the selected area of figure b
Fig.6  TEM characterization of T2200 sample: (a) low-magnification image of the T2200 specimen, (b) high power diagram of T2200 sample, the upper right corner is the FFT diagram of b diagram, (c) selected area electron diffraction pattern of figure a, (d) enlarged view of the selected area of figure b
Fig.7  Dielectric constant of SiC absorbing material (a) real part of dielectric constant, (b) imaginary part of dielectric constant, (c) loss angle tangent ε″/ε
Fig.8  Intrinsic impedance of samples T1800, T2000,T2200
Fig.9  Reflectivity simulation model of SiC absorbing material
Fig.10  Reflectivity of T1800, T2000, T2200 specimens of different thicknesses
1 Guo Y, Zhang X F, Chen M, et al. Research progress of MAX phase high temperature absorbing materials [J]. China Powder Sci. Technol., 2021, 27(5): 58
郭 阳, 张雪峰, 陈 敏 等. MAX相高温吸波材料的研究展 [J]. 中国粉体技术, 2021, 27(5): 58
2 Li M, Yin X W, Zheng G P, et al. High-temperature dielectric and microwave absorption properties of Si3N4-SiC/SiO2 composite ceramics [J]. J. Mater. Sci., 2015, 50(3): 1478
3 Sang J H. Low-Observable Technologies of Aircraft [M]. Beijing: Aviation Industry Press, 2013
桑建华. 飞行器隐身技术 [M]. 北京: 航空工业出版, 2013
4 Yang M L. Research on micro-structure adjustment and microwave absorption properties of carbon-based composite materials [D]. Harbin: Harbin Institute of Technology, 2020
杨明龙. 碳基复合材料的微结构调控及其电磁波吸收性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2020
5 Wang J. Study on the properties of polysiloxane Pyrolysis CNTs/Si-O-C high temperature structural absorbing materials [D]. Xi'an: Xi'an University of architecture and technology, 2020
王 晶. 聚硅氧烷热解CNTs/Si-O-C耐高温结构吸波材料性能研究 [D]. 西安: 西安建筑科技大学, 2020
6 Wang Y F, Zhu L, Han L, et al. Research status and development trend of electromagnetic absorbing materials [J]. Acta Mater. Compositae Sin., 2023, 40(1): 1
王一帆, 朱 琳, 韩 露 等. 电磁吸波材料的研究现状与发展趋势 [J]. 复合材料学报, 2023, 40(1): 1
7 Xing Y M, Yang T, Wang E H, et al. Research progress of SiC composite microwave absorbing materials [J]. Acta Mater. Compositae Sin., 2024, 41
邢原铭, 杨 涛, 王恩会 等. SiC复合吸波材料的研究进展 [J]. 复合材料学报, 2024, 41
8 Liang C Y, Wang Z J. Research progress of high temperature microwave absorption materials [J]. J. Aeronaut. Mater., 2018, 38(3): 3
梁彩云, 王志江. 耐高温吸波材料的研究进展 [J]. 航空材料学报, 2018, 38(3): 3
9 Zhang M, Li Z, Wang, T, et al. Preparation and electromagnetic wave absorption performance of Fe3Si/SiC@SiO2 nanocomposi-tes [J]. Chem. Eng. J., 362: 619
10 Wang W C, Liu G, Wang L Y, et al. Electromagnetic properties of coaxial core-shell CNTs@SiC prepared by chemical vapor deposition [J]. Rare Met. Mater. Eng., 2022, 51(10): 3744
王伟超, 刘 顾, 汪刘应 等. 化学气相沉积法制备同轴核壳结构CNTs@SiC的电磁特性研究 [J]. 稀有金属材料与工程, 2022, 51(10): 3744
11 Doorbar P J, Kyle-Henney S. Development of continuously reinforced metal matrix composites for aerospace applications [J]. Compr. Compos. Mater. II., 2018, 4: 439
12 Durodola J F, Fellows N, Winfield P, et al. Continuously reinforced metal matrix composites [J]. Mater. Sci. Eng. C., 2017, 3: 717
13 Wan M J, Li H, Li S Q, et al. Investigation on the influence of SiCf/TC17 composites preparation method on growth kinetics of interfacial reactive layer [J]. J. Aeronaut. Mater., 2023, 43(4): 68
王敏涓, 李 虎, 李四清 等. SiCf/TC17复合材料制备方法对界面反应层生长动力学的影响 [J]. 航空材料学报, 2023, 43(4): 68
doi: 10.11868/j.issn.1005-5053.2022.000213
14 Lui X Y, Wang F, Gao S T, et al. Preparation of C/Zr0.5Hf0.5C-SiC composite by PIP process its microstructure and flexural proper-ties [J]. J. Mater. Eng., 2023, 51(8): 155
刘星煜, 万 帆, 高世涛 等. PIP工艺制备C/Zr0.5Hf0.5C-SiC复合材料及其微观结构和弯曲性能 [J]. 材料工程, 2023, 51(8): 155
doi: 10.11868/j.issn.1001-4381.2023.000151
15 Zhu W Z, Zheng Z X, Jiang K, et al. Preparation of SiC powders by carbonthermal reduction method at low temperature [J]. Bull. Chin. Ceram. Soc., 2012, 31(1): 46
朱文振, 郑治祥, 姜 坤 等. 碳热还原法低温制备碳化硅微粉 [J]. 硅酸盐通报, 2012, 31(1): 46
16 Zan W Y, Ma B Y. New progress in preparation of high purity SiC micropowder [J]. Refractories., 2021, 55(2): 161
doi: 10.3969/j.issn.1001-1935.2021.02.016
昝文宇, 马北越. 高纯SiC微粉制备进展 [J]. 耐火材料, 2021, 55(2): 161
doi: 10.3969/j.issn.1001-1935.2021.02.016
17 He J F, Zhang H J, Ge S T, et al. Research progress in preparation methods of SiC porous ceramics [J]. Refractories., 2020, 54(2): 195
何江锋, 张海军, 葛胜涛 等. SiC多孔陶瓷制备方法研究进展 [J]. 耐火材料, 2020, 54(2): 195
18 Gómez-Gómez A, Moyano J J, Román-Manso B, et al. Highly-porous hierarchical SiC structures obtained by filament printing and partial sintering [J]. J. Eur. Ceram. Soc., 2019, 39(4): 688
19 Zhu W, Fu H, Xu Z F, et al. Fabrication and characterization of carbon fiber reinforced SiC ceramic matrix composites based on 3D printing technology [J]. J. Eur. Ceram. Soc., 2018, 38(14): 4603
20 Pan Z X, Guo X, Zhang Z B, et al. Research progress on silicon-based ceramic precursors for 3D printing [J]. Aerosp. Mater. Technol., 2022, 52(1): 11
潘振雪, 郭 香, 张宗波 等. 3D打印用硅基陶瓷前驱体研究进展 [J]. 宇航材料工艺, 2022, 52(1): 11
21 Wu S, Zhang Y W, Chen M, et al. 3D printing technology microwave absorption metamaterial absorbing honeycomb microwave absorbers ceramic matrix composites absorbers [J]. J. Aeronaut. Mater., 2021, 1(6): 13
吴 赛, 张有为, 陈 猛 等. 3D打印微波吸收材料研究进展 [J]. 航空材料学报, 2021, 1(6): 13
22 Srikanth V, Roy R, Graham E K, et al. B x O: Phases Present at High Pressure and Temperature [J]. J. Am. Ceram. Soc., 1991, 74(12): 3145
23 Lee E J, Bang M J, Kim B S, et al. Coarsening of high purity SiC particles by gas phase transport [J]. Ceram. Int., 2015, 41(10): 14958
24 Jacobson N S, Lee K N, Fox D S. Reactions of silicon carbide and silicon (Ⅳ) oxide at elevated temperatures [J]. J. Am. Ceram. Soc., 1992, 75(6): 1603
25 Singhal S C. Thermodynamic analysis of the high temperature stability of silicon nitride and silicon carbide [J]. Ceram. Int., 1976, 11(4): 128
26 Huang Q W, Gao J Q, Jin Z H. Effect of heat treatment temperature on microstructure and fracture strength of reaction-sintered silicon carbide [J]. Refractories., 2000, 34(1): 17
黄清伟, 高积强, 金志浩. 热处理温度对反应烧结碳化硅材料组织与性能的影响 [J]. 耐火材料, 2000, 34(1): 17
27 Sung H W, Lee G W, Yun E S, et al. Novel process for recrystallized silicon carbide through β-α phase transformation [J]. Ceram. Int., 2020, 46: 21920
28 Bind J M. Phase transformation during hot-pressing of cubic SiC [J]. Mater. Res. Bull., 1978, 13(2): 91
29 Lilov S K. Thermodynamic analysis of phase transformations at the dissociative evaporation of silicon carbide polytypes [J]. Diam. Relat. Mater., 1995, 4(12): 1331
30 Wu A H, Cao W B, Li J T, et al. The influences of hot pressing on the microstructure and mechanical properties of SiC ceramic [J]. Powder Metallurgy Technology. 2001, 19(6): 327
武安华, 曹文斌, 李江涛 等. 热压工艺对SiC陶瓷结构及性能的影响 [J]. 粉末冶金技术, 2001, 19(6): 327
31 Ying T P, Zhang J, Liu X G, et al. Corncob-derived hierarchical porous carbon/Ni composites for microwave absorbing application [J]. J. Alloys. Compd., 849: 156662
32 Wei Z H, Peng Y Q, Kang Z W, et al. Progress in polymer-derived silicon carbide ceramics for microwave absorbing applications [J]. J. Ceram., 2021, 42(4): 547
魏子涵, 彭雨晴, 康治伟 等. 聚碳硅烷转化碳化硅陶瓷吸波性能的研究进展 [J]. 陶瓷学报, 2021, 42(4): 547
33 Li Y, Zhao Y, Lu X Y, et al. Self-healing superhydrophobic polyvinylidene fluoride/Fe3O4@polypyrrole fiber with core-sheath structures for superior microwave absorption [J]. Nano Res., 2016, 9(7): 2034
34 Fang J Z, Xu C F. Study on three kinds of XRD quantitative analysis methods [J]. Coal Convers., 2010, 33(2): 88
房俊卓, 徐崇福. 三种X射线物相定量分析方法对比研究 [J]. 煤炭转化, 2010, 33(2): 88
35 Gong A X, Xu C, An Z, et al. Transmission electron microscopy characterization of grain structure and nanoparticles of 15-15Ti ODS austenitic steel [J]. Mater. Rep., 2024, 38(10): 23010111
龚翱翔, 徐 驰, 安 瞻 等. 15-15TiODS奥氏体钢晶粒组织与纳米粒子的透射电镜表征 [J]. 材料导报, 2024, 38(10): 23010111
36 Ju Z C. Synthesis and characterization of silicon carbide and titanium carbide nanomaterials [D]. Jinan: Shandong University, 2008
鞠治成. 碳化硅和碳化钛纳米材料的制备与表征 [D]. 济南: 山东大学, 2008
37 Xu W Y, Sun J W, Zhu Y F. Preparation and performance of self-assembled carbon/epoxy composite microwave absorbing coating [J]. Chin. J. Mater. Res., 2023, 37(12): 955
徐文玉, 孙佳文, 朱曜峰. 自组装碳/环氧树脂复合吸波涂料的制备及性能 [J]. 材料研究学报, 2023, 37(12): 955
38 Li C S, Qin J Y, Lin L H, et al. Research on the application of pyrolytic carbon-based foam structure to thermal vacuum absorbing box [J]. Spacecraft Environment Engineering., 2023, 40(6): 673
李处森, 秦家勇, 林立海 等. 热解碳基泡沫结构应用于热真空吸波箱技术研究 [J]. 航天器环境工程, 2023, 40(6): 673
39 Lin L H. Study on carbon-based foam microwave absorbing material for thermal vacuum absorbing box [D]. Hefei: University of Science and Technology of China, 2023
林立海. 热真空吸波箱用碳基泡沫吸波材料的研究 [D]. 合肥: 中国科学技术大学, 2023
[1] ZHANG Hengyu, HUANG Zhaodan, DUAN Tigang, WEN Qing, LI Ruocan, WU Houran, MA Li, ZHANG Haibing. Electrocatalytic Oxygen Reduction of Carbon-based Hierarchical Pt@Co Composite Catalytic Cathode in Natural Seawater[J]. 材料研究学报, 2024, 38(8): 632-640.
[2] HUANG Wenzhan, CHEN Yao, CHEN Peng, ZHANG Yujie, CHEN Xingyu. Stability of Pore Structure of ZL102 Al-alloy Foam Prepared by Secondary Foaming Method[J]. 材料研究学报, 2024, 38(8): 605-613.
[3] TAN Shangrong, YAO Zhuo, LIU Zechen, JIANG Yilei, GUO Shiqi, LI Lili. Fabrication and Performance of Metal Organic Framework Zn-BTC/rGO Nanocomposites[J]. 材料研究学报, 2024, 38(8): 576-584.
[4] HAO Ziheng, ZHENG Liumenghan, ZHANG Ni, JIANG Entong, WANG Guozheng, YANG Jikai. Color-changing Performance of Electrochromic Devices Based on WO3/Pt-NiO Electrodes[J]. 材料研究学报, 2024, 38(8): 569-575.
[5] ZHANG Wei, ZHANG Jie. Toughening Mechanism of B4C-Al2O3 Composite Ceramics[J]. 材料研究学报, 2024, 38(8): 614-620.
[6] ZHOU Hui, DU Bin, YANG Pengbin, JIN Dangqin, XIAO Jiali, SHEN Ming, WANG Shengwen. Sodium Gluconate Assisted Synthesis of Nest-like Bi/β-Bi2O3 Heterojunction and Its Visible-light Driven Photocatalytic Activities[J]. 材料研究学报, 2024, 38(7): 549-560.
[7] LIU Ying, CHEN Ping, ZHOU Xue, SUN Xiaojie, WANG Ruiqi. Preparation and Electrochemical Properties of Hollow FeS2/NiS2/Ni3S2@NC Cube Composites[J]. 材料研究学报, 2024, 38(6): 453-462.
[8] BIAN Pengbo, HAN Xiuzhu, ZHANG Junfan, ZHU Shize, XIAO Bolv, MA Zongyi. Effect of Aluminum Powder Size and Temperature on Mechanical Properties of Hot Pressed 15%SiC/2009Al Composite[J]. 材料研究学报, 2024, 38(6): 401-409.
[9] XU Dongwei, ZHANG Mingju, SHEN Zhihao, XIA Chenlu, XU Jingman, GUO Xiaoqin, XIONG Xuhai, CHEN Ping. Microwave Absorption Performance of Encapsulated Magnetic Particles With Nitrogen-Doped Carbon Nanotubes Fe3O4@NCNTs[J]. 材料研究学报, 2024, 38(6): 430-436.
[10] WANG Zhongnan, GUO Hui, MU Yueshan. Preparation and Properties of Nanocomposite Hydrogel with Dopamine Modification[J]. 材料研究学报, 2024, 38(4): 269-278.
[11] MA Fei, WANG Chuang, GUO Wuming, SHI Xiangdong, SUN Jianying, PANG Gang. Effect of Carbon Content on Tribological Properties of CrN:a-C Multiphase Composite Coatings[J]. 材料研究学报, 2024, 38(4): 297-307.
[12] YU Sheng, GUO Wei, LV Shulin, WU Shusen. Synthesis and Mechanical Properties of Ti-Zr-Cu-Pd-Mo Amorphous Alloy Based Composites with In-situ Autogenous β-Ti Phase[J]. 材料研究学报, 2024, 38(2): 105-110.
[13] WENG Xin, LI Qiqi, YANG Guifang, LV Yuancai, LIU Yifan, LIU Minghua. Preparation of Adsorbent Fe-loaded Cellulose/Tannin and Its Adsorption Characteristics for Fluoroquinolones Antibiotics[J]. 材料研究学报, 2024, 38(2): 92-104.
[14] LI Zhaoyang, XUE Yi, YANG Zehao, ZHAO Qingzhi, PENG Yanshuang, LIU Yong, YANG Jianping, ZHANG Hui. Performance of Interlayer Toughened Carbon Fiber/Epoxy Composites of Polyethersulfone Porous Fiber Veil[J]. 材料研究学报, 2024, 38(1): 33-42.
[15] MA Yuan, WANG Han, NI Zhongqiang, ZHANG Jiangang, ZHANG Ruonan, SUN Xinyang, LI Chusen, LIU Chang, ZENG You. Synergistic Effect of Carbon Nanotubes with Zinc Oxide Nanowires for Enhanced Electromagnetic Shielding Performance of Hybrid Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2024, 38(1): 61-70.
No Suggested Reading articles found!