Please wait a minute...
Chinese Journal of Materials Research  2024, Vol. 38 Issue (9): 641-650    DOI: 10.11901/1005.3093.2023.558
ARTICLES Current Issue | Archive | Adv Search |
Effect of Rolling Temperature on Microstructure Evolution and Mechanical/Thermal Properties of Mg-4Zn-1Mn-1.2Ce Alloy Sheet
CUI Jie, LI Xudong, DU Xian, LI Shubo, DU Wenbo()
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
Cite this article: 

CUI Jie, LI Xudong, DU Xian, LI Shubo, DU Wenbo. Effect of Rolling Temperature on Microstructure Evolution and Mechanical/Thermal Properties of Mg-4Zn-1Mn-1.2Ce Alloy Sheet. Chinese Journal of Materials Research, 2024, 38(9): 641-650.

Download:  HTML  PDF(39892KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of rolling temperature on microstructure evolution and mechanical/thermal properties of Mg-4Zn-1Mn-1.2Ce alloy was investigated. Results indicate that Mg-Zn-Ce (τ phase) second phase and α-Mn were crushed and distributed along the rolling direction in the as hot-rolled Mg-4Zn-1Mn-1.2Ce alloy. When the rolling temperature was lower than 400oC, most grains became deformed grains, but the proportion of recrystallized grains increased due to the occurred static recrystallization during heat preservation in the intervals between rolling-passes when the plate was rolled at 425oC. The tensile strength, yield strength and elongation of the rolled Mg-4Zn-1Mn-1.2Ce alloy sheet were 386 MPa, 356 MPa and 4.8%, respectively, as well as the thermal conductivity of 127.3 W·(m·K)-1 when it was hot-rolled at 375oC. Annealing has resulted in a slight decrease in strength, but a great improvement in toughness. In the case of the alloy rolled at 375oC, its elongation increased from 4.8% to 23.5% after annealed at 400oC/60 min. Also, the thermal conductivity of the annealed alloy decreased about 4~9 W·(m·K)-1 in comparison with that of the as-rolled one.

Key words:  nonferrous metals and alloys      Mg alloy      hot rolling      annealing      mechanical properties      thermal conductivity     
Received:  22 November 2023     
ZTFLH:  TG146.2+2  
Fund: National Key Research of China(2021YFB3701100)
Corresponding Authors:  DU Wenbo, Tel: (010)67392917, E-mail: duwb@bjut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.558     OR     https://www.cjmr.org/EN/Y2024/V38/I9/641

Fig.1  Optical microstructures of Mg-4Zn-1Mn-1.2Ce alloy hot-rolled at different temperature (a) 350oC; (b) 375oC; (c) 400oC; (d) 425oC
Fig.2  XRD spectrum of Mg-4Zn-1Mn-1.2Ce alloy hot-rolled at 350oC
Fig.3  SEM and EDS surface mapping of Mg-4Zn-1Mn-1.2Ce alloy hot-rolled at different temperature (a) 350oC; (b) 375oC; (c) 400oC; (d) 425oC
PointMgZnMnCe
A80.5615.270.563.61
B62.122.7818.3216.78
C73.5820.410.595.42
D43.030.8654.052.06
E34.560.8064.320.32
F66.4425.700.906.96
G81.7013.670.554.08
H52.370.6046.930.10
Table 1  EDS analysis of the A-H points in Fig.3 (%, atom fraction)
Fig.4  IPF and recrystallization distribution of Mg-4Zn-1Mn-1.2Ce alloy hot-rolled at different temperature (a, b) 350oC; (c, d) 375oC; (e, f) 400oC; (g, h) 425oC
Fig.5  IPF and recrystallization distribution of Mg-4Zn-1Mn-1.2Ce alloy hot-rolled at different temperature (a) 350oC; (b) 375oC; (c) 400oC; (d) 425oC
Fig.6  Grain boundaries distribution of Mg-4Zn-1Mn-1.2Ce alloy hot-rolled at different temperature (a) 350oC; (b) 375oC; (c) 400oC; (d) 425oC
T / oCUTS / MPaYS / MPaEL / %α / mm2·s-1λ/ W·(m·K)-1
350369±2348±35.8±0.273.8±1.1129.5±1.9
375384±3356±24.8±0.573.0±0.1127.3±0.2
400368±2335±26.2±0.471.6±0.1127.3±0.2
425325±3212±510.9±1.270.5±0.6123.9±1.0
Table 2  Mechanical and thermal properties at room temperature of Mg-4Zn-1Mn-1.2Ce alloy hot rolled at different temperature
Fig.7  Optical microstructures of the 375oC hot-rolled Mg-4Zn-1Mn-1.2Ce alloy annealed at different temperature for different time (a) 350oC/20 min; (b) 350oC/40 min; (c) 350oC/60 min; (d) 400oC/20 min; (e) 400oC/40 min; (f) 400oC/60 min; (g) 450oC/20 min; (h) 450oC/40 min; (i) 450oC/60 min
Fig.8  Optical microstructures of Mg-4Zn-1Mn-1.2Ce alloy hot-rolled at different temperature and annealed at 400oC for 60 min (a) 350oC; (b) 375oC; (c) 400oC; (d) 425oC
Fig.9  KAM distribution of Mg-4Zn-1Mn-1.2Ce alloy hot-rolled at different temperature and annealed at 400oC for 60 min (a) 350oC; (b) 375oC; (c) 400oC; (d) 425oC
T / oCUTS / MPaYS / MPaEL / %α / mm2·s-1λ/ W·(m·K)-1
350305±3164±221.8±0.572.5±0.6125.6±1.0
375328±2175±323.5±0.969.2±0.3118.8±0.5
400307±2162±420.4±0.668.6±0.1120.1±0.2
425264±2139±227.1±0.767.4±0.1117.9±0.2
Table 3  Mechanical/thermal properties at room temperature of Mg-4Zn-1Mn-1.2Ce alloy hot-rolled at different temperature and annealed at 400oC for 60 min
ElementAtomic radius / nmValenceΔR/RMg / %Solubility / atom%[14]
Mg0.160+2--
Zn0.153+2-16.82.40 (598 K)
Mn0.179+2, +4-15.01.00 (923 K)
Ce0.182+313.70.09 (865 K)
Table 4  The atomic radius, valence, increased matrix volume and the solid solubility in matrix of the elements in Mg-4Zn-1Mn-1.2Ce alloy
1 Liu Z, Wang Y, Wang Z G, alel. Developing trends of research and application of magnesium alloys [J]. Chin. J. Mater. Res., 2000, 14(5): 449
刘 正, 王 越, 王中光 等. 镁基轻质材料的研究与应用 [J]. 材料研究学报, 2000, 14(5): 449
2 Chen Z H. Wrought Magnesium Alloy [M]. Beijing: Chemical Industry Press, 2005
陈振华. 变形镁合金 [M]. 北京: 化学工业出版社, 2005
3 Liu Y F, Jia X J, Qiao X G, et al. Effect of La content on microstructure, thermal conductivity and mechanical properties of Mg-4Al magnesium alloys [J]. J. Alloy. Compd., 2019, 806: 71
doi: 10.1016/j.jallcom.2019.07.267
4 Zhang Y X, Kang H H, Nagaumi H, et al. Tracing the microstructures, mechanical properties and thermal conductivity of low-temperature extruded Mg-Mn alloys with various cerium additions [J]. Mater. Charact., 2023, 196: 1
5 Peng J, Zhong L P, Wang Y J, et al. Effect of extrusion temperature on the microstructure and thermal conductivity of Mg-2.0Zn-1.0Mn-0.2Ce alloys [J]. Mater. Des., 2015, 87: 914
6 Tong L B, Zhang J B, Zhang Q X, et al. Effect of warm rolling on the microstructure, texture and mechanical properties of extruded Mg-Zn-Ca-Ce/La alloy [J]. Mater. Charact., 2016, 115: 1
7 Zheng X B, Du W B, Wang Z H, et al. Remarkably enhanced mechanical properties of Mg-8Gd-1Er-0.5Zr alloy on the route of extrusion, rolling and aging [J]. Mater. Lett., 2018, 212: 155
8 Gao L, Yan H, Luo J, et al. Microstructure and mechanical properties of a high ductility Mg-Zn-Mn-Ce magnesium alloy [J]. J. Magnes. Alloy., 2013, 1(4): 283
9 Qi W J, Feng X W, Liu W H B, et al. Microstructure and mechanical properties of rolled- and annealed-Mg-3Zn-2Gd alloy [J]. Chin. J. Mater. Res., 2016, 30(7): 531
戚文军, 冯晓伟, 刘汪涵博 等. Mg-3Zn-2Gd合金轧制态和退火态的组织与力学性能 [J]. 材料研究学报, 2016, 30(7): 531
doi: 10.11901/1005.3093.2015.731
10 Huang M L, Li H X, Ding H, et al. Intermetallics and phase relations of Mg-Zn-Ce alloys at 400oC [J]. Trans. Nonferrous Met. Soc. China, 2012, 22(3): 539
11 Huang X S, Suzuki K, Chino Y. Static recrystallization behavior of hot-rolled Mg-Zn-Ce magnesium alloy sheet [J]. J. Alloy. Compd., 2017, 724: 981
12 Eivani A R, Ahmed H, Zhou J, et al. Correlation between electrical resistivity, particle dissolution, precipitation of dispersoids, and recrystallization behavior of AA7020 aluminum alloy [J]. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 2009, 40(10): 2435
13 Pan H C, Pan F S, Yang R M, et al. Thermal and electrical conductivity of binary magnesium alloys [J]. J. Mater. Sci., 2014, 49(8): 3107
14 Zhong L P. Research on the thermal conductivity of rare earth magnesium alloys and high thermal conductivity magnesium alloys [D]. Chongqing: Chongqing University, 2016
钟丽萍. 稀土镁合金导热性能及高导热镁合金研究 [D]. 重庆: 重庆大学, 2016
15 Zeng X Q, Wang J, Ying T, et al. Research progress in thermal conductivity of magnesium and its alloys [J]. Acta Metall. Sin., 2022, 58(4): 400
曾小勤, 王 杰, 应 韬 等. 镁及其合金导热研究进展 [J]. 金属学报, 2022, 58(4): 400
doi: 10.11900/0412.1961.2021.00520
16 Ying T, Chi H, Zheng M Y, et al. Low-temperature electrical resistivity and thermal conductivity of binary magnesium alloys [J]. Acta Mater., 2014, 80: 293
[1] LI Peiyue, ZHANG Minghui, SUN Wentao, BAO Zhihao, GAO Qi, WANG Yanzhi, NIU Long. Effect of Ce and La on Microstructure and Mechanical Properties of Al-Zn Alloy[J]. 材料研究学报, 2024, 38(9): 651-658.
[2] WANG Jun, WANG Xuanli, LIU Shuang, SONG Rui, SONG Xiwen. Effect of Mn Doping on Microstructure and Thermal Conductivity of (Y0.4Er0.6)3Al5O12 Ceramics Material for Thermal Barrier Coating[J]. 材料研究学报, 2024, 38(6): 463-470.
[3] WANG Zhongnan, GUO Hui, MU Yueshan. Preparation and Properties of Nanocomposite Hydrogel with Dopamine Modification[J]. 材料研究学报, 2024, 38(4): 269-278.
[4] WANG Yuzhao, JIANG Zhonghua, JIA Chunni, ZHANG Yutuo, WANG Pei. Microstructure and Mechanical Properties of an Austempered Nanostructured Bainitic Steel[J]. 材料研究学报, 2024, 38(4): 279-287.
[5] LI Yunfei, WANG Jinhe, ZHANG Long, LI Zhengkun, FU Huameng, ZHU Zhengwang, LI Hong, WANG Aimin, ZHANG Haifeng. Effect of Annealing Temperature on Microstructure and Properties of a High-entropy Alloy Fe35Ni30Cr20Al10Nb5[J]. 材料研究学报, 2024, 38(4): 241-247.
[6] YAN Junzhu, GAO Ming, YU Xiaoming, TAN Lili. Effect of Ca and Ag Content on Microstructure and Properties of Biodegradable Alloy Zn-Li-Ca-Ag[J]. 材料研究学报, 2024, 38(3): 177-186.
[7] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[8] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[9] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[10] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[12] CHEN Zhipeng, ZHU Zhihao, SONG Mengfan, ZHANG Shuang, LIU Tianyu, DONG Chuang. An Ultra-high-strength Ti-Al-V-Mo-Nb-Zr Alloy Designed from Ti-6Al-4V Cluster Formula[J]. 材料研究学报, 2023, 37(4): 308-314.
[13] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[14] ZHAO Yunmei, ZHAO Hongze, WU Jie, TIAN Xiaosheng, XU Lei. Effect of Heat Treatment on Microstructure and Properties of TIG Welded Joints of Powder Metallurgy Inconel 718 Alloy[J]. 材料研究学报, 2023, 37(3): 184-192.
[15] LIU Dongyang, TONG Guangzhe, GAO Wenli, WANG Weikai. Anisotropy of 2060 Al-Li Alloy Thick Plate[J]. 材料研究学报, 2023, 37(3): 235-240.
No Suggested Reading articles found!