Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (1): 1-10    DOI: 10.11901/1005.3093.2024.106
ARTICLES Current Issue | Archive | Adv Search |
Tensile Properties and Deformation Mechanism of Additive Manufacturing Superalloy at Different Temperatures
WANG Na1,2, LI Wenbin2,3, PANG Jianchao2(), CHEN Lijia1(), GAO Chong2, ZOU Chenglu2, ZHANG Hui3, LI Shouxin2, ZHANG Zhefeng2
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
3 Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
Cite this article: 

WANG Na, LI Wenbin, PANG Jianchao, CHEN Lijia, GAO Chong, ZOU Chenglu, ZHANG Hui, LI Shouxin, ZHANG Zhefeng. Tensile Properties and Deformation Mechanism of Additive Manufacturing Superalloy at Different Temperatures. Chinese Journal of Materials Research, 2025, 39(1): 1-10.

Download:  HTML  PDF(26209KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The typical superalloy GH4169 was prepared by selective laser melting (SLM), and then subjected to appropriate post-heat treatments, afterwardsits tensile properties was assessed in temperature range 25~650 oC. The microstructure evolution, tensile behavior at different temperatures were examinedby scanning electron microscopy and transmission electron microscopy, and the corresponding deformation mechanism of SLM GH4169 alloy was disscussed. The results show that the tensile curves of the of SLM GH4169 alloy are monotonic and smooth at 25 oC, 600 oC and 650 oC, but those at 450~550 oC are sawtooth-like. With the increasing test temperature, the tensile strength and yield strength of the SLM GH4169 alloy decreases from 1458 MPa to 1228 MPa and 1234 MPa to 1051 MPa respectively. The relationship between tensile strength and temperature of the SLM GH4169 is roughly linear with an error is less than 2%.The strengthening phases may obstruct the dislocation movement and plays a certain strengthening role in the temperature range 25~450 oC. While in the range 550~650 oC, slip bands may be the main deformation mode, and δ phases also has an adverse effect on tensile properties.

Key words:  metallic materials      GH4169 superalloy      experimental temperature      microstructure      deformation mechanism     
Received:  06 March 2024     
ZTFLH:  TG132.3+2  
Fund: National Natural Science Foundation of China(51871224);National Natural Science Foundation of China(52130002);National Natural Science Foundation of China(52321001);Science Center for Gas Turbine Project(P2022-C-IV-001-001)
Corresponding Authors:  PANG Jianchao, Tel: (024)83978779, E-mail: jcpang@imr.ac.cn;
CHEN Lijia, Tel: (024)25496301, E-mail: chenlijia@sut.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.106     OR     https://www.cjmr.org/EN/Y2025/V39/I1/1

NiCrNbMoTiAlCoCFe
50.0~55.017.0~21.04.75~5.452.8~3.30.85~1.150.2~0.7≤1.00.02~0.08Bal.
Table 1  Chemical composition of SLM GH4169 powder (mass fraction, %)
Laser power / WScanning velocity / mm·s-1

Layer thickness

/ mm

Scanning spacing

/ mm

Rotation angle

/ (°)

2509004010067
Table 2  Technological parameters of selective laser melting
Fig.1  Geometry of tensile tensile specimen (unit: mm)
Fig.2  SEM image of SLM GH4169 superalloy subjected to heat-treatment at different building directions and the morphology of precipitated phases of rod-shaped δ precipitates along grain boundary, needle-like δ precipitates and γ″, γ′ within grains (a) parallel to building direction; (b) perpendicular to building direction; (c) rod-shaped δ precipitates along grain boundary; (d) needle-like δ precipitates and γ″, γ′ within grains
Fig.3  Tensile properties of SLM GH4169 alloy at different temperatures(a) strength; (b) plasticity
Fig.4  Morphology of fracture surfaces of SLM GH4169 alloy after tensile tests at different temperatures (a1~a2) 25 oC; (b1~b2) 450 oC; (c1~c2) 500 oC; (d1~d2) 600 oC; (e1~e2) 650 oC
Fig.5  Engineering stress-strain curves of SLM GH4169 alloy
Fig.6  Serrations on tensile curves of SLM GH4169 alloy at temperatures of 450 oC and 550 oC (a) 450 oC; (b) 550 oC
Fig.7  Linear relationship between strength and temperature of SLM GH4169
Fig.8  EBSD analysis results for microstructures of original and after tensile deformation at different temperatures (a) the original microstructures; (b) 25 oC; (c) 450 oC; (d) 550 oC; (e) 600 oC; (f) 650 oC
Original25 oC450 oC550 oC600 oC650 oC
LAGBS / %27.868.167.164.261.668.5
HAGBS / %72.231.928.335.838.431.5
Table 3  Statistics of grain boundary after tensile tests at different temperatures
Fig.9  Distribution cloud map of KAM in SLM GH4169 alloy (a) original; (b) 25 oC; (c) 450 oC; (d) 550 oC; (e) 600 oC; (f) 650 oC
Fig.10  TEM images of deformation microstructures after tensile tests at temperatures of (a) RT; (b) 450 oC; (c~d) 550 oC; (e) 600 oC; (f) 650 oC
1 Tian S G, Wang X, Xie J, et al. Characteristic and mechanism of phase transformation of GH4169G alloy during heat treatment [J]. Acta Metall. Sin., 2013, 49(7): 845
doi: 10.3724/SP.J.1037.2012.00712
田素贵, 王 欣, 谢 君 等. GH4169G合金热处理期间的相转变特征与机理分析 [J]. 金属学报, 2013, 49(7): 845
doi: 10.3724/SP.J.1037.2012.00712
2 Liu F, Sun W R, Yang S L, et al. Effect of A1 on impact strength of GH4169 alloy [J]. Chin. J. Mater. Res., 2008, (3): 230
刘 芳, 孙文儒, 杨树林 等. A1对GH4169合金冲击性能的影响 [J]. 材料研究学报, 2008, (3): 230
3 Diao W, Du L, Wang Y B, et al. Anisotropy of Ti6Al4V alloy fabricated by selective laser melting [J]. Chin. J. Mater. Res., 2022, 36(3): 231
doi: 10.11901/1005.3093.2021.105
刁 威, 杜 磊, 汪彦博 等. 选区激光熔化Ti6Al4V合金的各向异性 [J]. 材料研究学报, 2022, 36(3): 231
4 Li P J, Du J, Ni J T, et al. Application status of laser selective melting forming technology in the aerospace field [J]. Aerosp. Manuf. Tech., 2023, (5): 11
李沛剑, 杜 鹃, 倪江涛 等. 激光选区熔化成形技术在航空航天领域应用现状 [J]. 航天制造技术, 2023, (5): 11
5 Wang Y C, Lei L M, Shi L, et al. Scanning strategy dependent tensile properties of selective laser melted GH4169 [J]. Mater. Sci. Eng., 2020, 788A: 139616
6 Hou J, Dong J X, Yao Z H. Microscopic damage mechanisms during fatigue crack propagation at high temperature in GH4169 superalloy [J]. Chin. J. Eng., 2018, 40(7): 822
侯 杰, 董建新, 姚志浩. GH4169合金高温疲劳裂纹扩展的微观损伤机制 [J]. 工程科学学报, 2018, 40(7): 822
7 Liu Y C, Guo Q Y, Li C, et al. Recent Progress on evolution of precipitates in Inconel 718 superalloy [J]. Acta Metall. Sin., 2016, 52(10): 1259
刘永长, 郭倩颖, 李 冲 等. Inconel718高温合金中析出相演变研究进展 [J]. 金属学报, 2016, 52(10): 1259
doi: 10.11900/0412.1961.2016.00290
8 Ye N Y, Cheng M, Zhang S H, et al. Influence of delta phase precipitation on static recrystallization of cold-rolled Inconel 718 alloy in solid solution treatment [J]. J. Iron Steel Res. Int., 2019, 26(2): 148
9 Gao Y, Zhang D Y, Cao M, et al. Effect of δ phase on high temperature mechanical performances of Inconel 718 fabricated with SLM process [J]. Mater. Sci. Eng., 2019, 767A: 138327
10 Anderson M, Thielin A L, Bridier F, et al. δ Phase precipitation in Inconel 718 and associated mechanical properties [J]. Mater. Sci. Eng., 2017, 679A: 48
11 Popovich V A, Borisov E V, Popovich A A, et al. Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting [J]. Mater. Des., 2017, 131: 12
12 Ram G D J, Reddy A V, Rao K P, et al. Microstructure and tensile properties of Inconel 718 pulsed Nd-YAG laser welds [J]. J. Mater. Process Tech., 2005, 167(1): 73
13 Lee S C, Chang S H, Tang T P, et al. Improvement in the microstructure and tensile properties of inconel 718 superalloy by HIP treatment [J]. Mater. Trans., 2006, 47(11): 2877
14 Song Z X, Wang D P, Wu Z S, et al. Ultrahigh cycle fatigue performance of GH4169 alloy by selective laser melting [J]. Mater. Mech. Eng., 2020, 44A(11): 72
宋宗贤, 王东坡, 吴志生 等. 激光选区熔化成形GH4169合金的超高周疲劳性能 [J]. 机械工程材料, 2020, 44(11): 72
doi: 10.11973/jxgccl202011013
15 Huang L, Cao Y, Li G H, et al. Microstructure characteristics and mechanical behaviour of a selective laser melted Inconel 718 alloy [J]. J. Mater. Res. Technol., 2020, 9(2): 2440
16 Kim S, Choi H, Lee J, et al. Room and elevated temperature fatigue crack propagation behavior of Inconel 718 alloy fabricated by laser powder bed fusion [J]. Int. J. Fatigue, 2020, 140: 105802
17 Zheng Q, Liu T, Wei J B, et al. Temperature dependence in tensile properties and deformation behavior of GH4169 alloy [J]. J. Iron Steel Res. Int., 2023, 30(12): 2566
18 Maj P, Zdunek J, Gizynski M, et al. Statistical analysis of the Portevin-Le Chatelier effect in Inconel 718 at high temperature [J]. Mater. Sci. Eng., 2014, 619A: 158
19 Liu M, Cai Y F, Wang Q Y, et al. The low cycle fatigue property, damage mechanism, and life prediction of additively manufactured Inconel 625: Influence of temperature [J]. Fatigue Fract. Eng. Mater. Struct., 2023, 46(10): 3829
20 Zhang H J, Li C, Guo Q Y, et al. Hot tensile behavior of cold-rolled Inconel 718 alloy at 650 oC: The role of δ it phase [J]. Mater. Sci. Eng., 2018, 722A: 136
21 Wang Y, Shao W Z, Zhen L, et al. Tensile deformation behavior of superalloy 718 at elevated temperatures [J]. J. Alloy Compd., 2009, 471(1-2): 331
22 Li W B, Pang J C, Zhang H, et al. The high-cycle fatigue properties of selective laser melted Inconel 718 at room and elevated temperatures [J]. Mater. Sci. Eng., 2022, 836A: 142716
23 Zhang X Y, Chen Y, Cao L Y, et al. Microstructures and tensile properties of a grain-size gradient nickel- based superalloy [J]. J. Alloy Compd., 2023, 960: 170344
24 Li Z L, Lu C, Cheng G, et al. Microstructure and mechanical properties of selected laser meled GH4169 molded parts [J]. Appl. Laser, 2019, 39(1): 48
栗子林, 路 超, 程 格 等. 选区激光熔化GH4169成型件微观组织及力学性能研究 [J]. 应用激光, 2019, 39(1): 48
25 Hale C L, Rollings W S, Weaver M L. Activation energy calculations for discontinuous yielding in Inconel 718SPF [J]. Mater. Sci. Eng., 2001, 300A(1-2): 153
26 Prasad K, Sarkar R, Ghosal P, et al. Tensile deformation behaviour of forged disc of IN 718 superalloy at 650 oC [J]. Mater. Des., 2010, 31(9): 4502
27 Wang X G, Han G M, Cui C Y, et al. On the γ′ precipitates of the normal and inverse Portevin-Le Chatelier effect in a wrought Ni-base superalloy [J]. J. Mater. Sci. Technol., 2019, 35(1): 84
28 Gopinath K, Gogia A K, Kamat S, et al. Dynamic strain ageing in Ni-base superalloy 720Li [J]. Acta Materialia, 2009, 57(4): 1243
29 Sarkar A, Nagesha A, Parameswaran P, et al. Insights into dynamic strain aging under cyclic creep with reference to strain burst: Some new observations and mechanisms. Part-1: Mechanistic aspects [J]. Mater. Sci. Eng., 2016, 660A: 213
30 Pavan A H V, Narayan R L, Li S H, et al. Mechanical behavior and dynamic strain ageing in Haynes®282 superalloy subjected to accelerated ageing [J]. Mater. Sci. Eng., 2022, 832A: 142486
31 Kamaya M, Wilkinson A J, Titchmarsh J M. Measurement of plastic strain of polycrystalline material by electron backscatter diffraction [J]. Nucl. Eng. Des., 2005, 235(6): 713
[1] XU Congmin, LI Xueli, FU Anqing, SUN Shuwen, CHEN Zhiqiang, LI Chengchen. Effect of Compound Bactericidal Corrosion Inhibitor on Corrosion Behavior of N80 Steel at Different Temperatures[J]. 材料研究学报, 2025, 39(2): 145-152.
[2] WU Xiaoqi, WAN Hongjiang, MING Hongliang, WANG Jianqiu, KE Wei, HAN En-Hou. Effect of Compression Rate on Hydrogen Embrittlement Sensitivity of X65 Pipeline Steel Based on in-situ Small Punch Test[J]. 材料研究学报, 2025, 39(2): 92-102.
[3] MA Xiuge, WU Qinghui, PANG Jianchao, LIU Zengqian, LI Shouxin, LUO Kailun, ZHANG Zhefeng. Effect of Grain Boundary Misorientation on Tensile Properties of Bi-crystal Superalloy at Ambient and High Temperatures[J]. 材料研究学报, 2025, 39(2): 81-91.
[4] YUAN Hongyuan, ZHANG Siqian, WANG Dong, ZHANG Yingjian, MA Li, YU Minghan, ZHANG Haoyu, ZHOU Ge, CHEN Lijia. Effect of Long-term Thermal Exposure on Microstructure Evolution of Interface Thermal Barrier Coating/DZ411 Ni-based Superalloy[J]. 材料研究学报, 2025, 39(2): 113-125.
[5] XU Zhanyuan, ZHAO Wei, SHI Xiangshi, ZHANG Zhenyu, WANG Zhonggang, HAN Yong, FAN Jinglian. Effect of Composition Adjustment on Structure and Magnetic Properties of Soft Magnetic MnZn Ferrites[J]. 材料研究学报, 2025, 39(1): 55-62.
[6] HAN Heng, LI Hongqiao, LI Peng, MA Guozheng, GUO Weiling, LIU Ming. Effect of Cold Spraying Temperature on Structure and Tribological Properties of Ni-Ti3AlC2 Composite Coating[J]. 材料研究学报, 2025, 39(1): 44-54.
[7] DENG Xiaolong, WANG Shanshan, DAI Xinxin, LIU Yi, HUANG Jinzhao. Preparation and Performance of Electrocatalyst of Amorphous FeOOH Covered Layered Double Hydroxide CoFeAl-Heterostructure for Efficient Overall Water Splitting in Alkaline Solution[J]. 材料研究学报, 2025, 39(1): 71-80.
[8] MU Chunhao, CHEN Wenge, YU Tianliang, MA Jiangjiang. Interface Microstructure and Properties of TA2/Q345 Composite Pipes Prepared by Hot Assembling and Diffusion Welding[J]. 材料研究学报, 2025, 39(1): 35-43.
[9] LI Peiyue, ZHANG Minghui, SUN Wentao, BAO Zhihao, GAO Qi, WANG Yanzhi, NIU Long. Effect of Ce and La on Microstructure and Mechanical Properties of Al-Zn Alloy[J]. 材料研究学报, 2024, 38(9): 651-658.
[10] YIN Yifeng, LU Zhengguan, XU Lei, WU Jie. Hot Isostatic Pressing of GH4099 Alloy Powders and Preparation of Thin-walled Cylinders[J]. 材料研究学报, 2024, 38(9): 669-679.
[11] WANG Xiaofeng, TAN Wei, FENG Guangming, LIU Jibo, LIU Xianbin, LU Han. Effect of Fe-rich Phase on Mechanical Properties of Al-Mg-Si Alloy[J]. 材料研究学报, 2024, 38(9): 701-710.
[12] SHAO Xia, BAO Mengfan, CHEN Shijie, LIN Na, TAN Jie, MAO Aiqin. Preparation and Lithium Storage Performance of Spinel-type Cobalt-free (Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 High-entropy Oxide[J]. 材料研究学报, 2024, 38(9): 680-690.
[13] CEN Yaodong, JI Chunjiao, BAO Xirong, WANG Xiaodong, CHEN Lin, DONG Rui. Stress-Strain Field at the Fatigue Crack Tip of Pearlite Heavy Rail Steel[J]. 材料研究学报, 2024, 38(9): 711-720.
[14] LIU Qing'ao, ZHANG Weihong, WANG Zhiyuan, SUN Wenru. Low-cycle Fatigue Behavior of a Cast Ni-based Superalloy K4169 at 650oC[J]. 材料研究学报, 2024, 38(8): 621-631.
[15] LIU Shuo, ZHANG Peng, WANG Bin, WANG Kaizhong, XU Zikuan, HU Fangzhong, DUAN Qiqiang, ZHANG Zhefeng. Investigations on Strength-Toughness Relationship and Low Temperature Brittleness of High-speed Railway Axle Steel DZ2[J]. 材料研究学报, 2024, 38(8): 561-568.
No Suggested Reading articles found!