|
|
Tensile Properties and Deformation Mechanism of Additive Manufacturing Superalloy at Different Temperatures |
WANG Na1,2, LI Wenbin2,3, PANG Jianchao2( ), CHEN Lijia1( ), GAO Chong2, ZOU Chenglu2, ZHANG Hui3, LI Shouxin2, ZHANG Zhefeng2 |
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China 2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China 3 Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China |
|
Cite this article:
WANG Na, LI Wenbin, PANG Jianchao, CHEN Lijia, GAO Chong, ZOU Chenglu, ZHANG Hui, LI Shouxin, ZHANG Zhefeng. Tensile Properties and Deformation Mechanism of Additive Manufacturing Superalloy at Different Temperatures. Chinese Journal of Materials Research, 2025, 39(1): 1-10.
|
Abstract The typical superalloy GH4169 was prepared by selective laser melting (SLM), and then subjected to appropriate post-heat treatments, afterwardsits tensile properties was assessed in temperature range 25~650 oC. The microstructure evolution, tensile behavior at different temperatures were examinedby scanning electron microscopy and transmission electron microscopy, and the corresponding deformation mechanism of SLM GH4169 alloy was disscussed. The results show that the tensile curves of the of SLM GH4169 alloy are monotonic and smooth at 25 oC, 600 oC and 650 oC, but those at 450~550 oC are sawtooth-like. With the increasing test temperature, the tensile strength and yield strength of the SLM GH4169 alloy decreases from 1458 MPa to 1228 MPa and 1234 MPa to 1051 MPa respectively. The relationship between tensile strength and temperature of the SLM GH4169 is roughly linear with an error is less than 2%.The strengthening phases may obstruct the dislocation movement and plays a certain strengthening role in the temperature range 25~450 oC. While in the range 550~650 oC, slip bands may be the main deformation mode, and δ phases also has an adverse effect on tensile properties.
|
Received: 06 March 2024
|
|
Fund: National Natural Science Foundation of China(51871224);National Natural Science Foundation of China(52130002);National Natural Science Foundation of China(52321001);Science Center for Gas Turbine Project(P2022-C-IV-001-001) |
Corresponding Authors:
PANG Jianchao, Tel: (024)83978779, E-mail: jcpang@imr.ac.cn; CHEN Lijia, Tel: (024)25496301, E-mail: chenlijia@sut.edu.cn
|
1 |
Tian S G, Wang X, Xie J, et al. Characteristic and mechanism of phase transformation of GH4169G alloy during heat treatment [J]. Acta Metall. Sin., 2013, 49(7): 845
doi: 10.3724/SP.J.1037.2012.00712
|
|
田素贵, 王 欣, 谢 君 等. GH4169G合金热处理期间的相转变特征与机理分析 [J]. 金属学报, 2013, 49(7): 845
doi: 10.3724/SP.J.1037.2012.00712
|
2 |
Liu F, Sun W R, Yang S L, et al. Effect of A1 on impact strength of GH4169 alloy [J]. Chin. J. Mater. Res., 2008, (3): 230
|
|
刘 芳, 孙文儒, 杨树林 等. A1对GH4169合金冲击性能的影响 [J]. 材料研究学报, 2008, (3): 230
|
3 |
Diao W, Du L, Wang Y B, et al. Anisotropy of Ti6Al4V alloy fabricated by selective laser melting [J]. Chin. J. Mater. Res., 2022, 36(3): 231
doi: 10.11901/1005.3093.2021.105
|
|
刁 威, 杜 磊, 汪彦博 等. 选区激光熔化Ti6Al4V合金的各向异性 [J]. 材料研究学报, 2022, 36(3): 231
|
4 |
Li P J, Du J, Ni J T, et al. Application status of laser selective melting forming technology in the aerospace field [J]. Aerosp. Manuf. Tech., 2023, (5): 11
|
|
李沛剑, 杜 鹃, 倪江涛 等. 激光选区熔化成形技术在航空航天领域应用现状 [J]. 航天制造技术, 2023, (5): 11
|
5 |
Wang Y C, Lei L M, Shi L, et al. Scanning strategy dependent tensile properties of selective laser melted GH4169 [J]. Mater. Sci. Eng., 2020, 788A: 139616
|
6 |
Hou J, Dong J X, Yao Z H. Microscopic damage mechanisms during fatigue crack propagation at high temperature in GH4169 superalloy [J]. Chin. J. Eng., 2018, 40(7): 822
|
|
侯 杰, 董建新, 姚志浩. GH4169合金高温疲劳裂纹扩展的微观损伤机制 [J]. 工程科学学报, 2018, 40(7): 822
|
7 |
Liu Y C, Guo Q Y, Li C, et al. Recent Progress on evolution of precipitates in Inconel 718 superalloy [J]. Acta Metall. Sin., 2016, 52(10): 1259
|
|
刘永长, 郭倩颖, 李 冲 等. Inconel718高温合金中析出相演变研究进展 [J]. 金属学报, 2016, 52(10): 1259
doi: 10.11900/0412.1961.2016.00290
|
8 |
Ye N Y, Cheng M, Zhang S H, et al. Influence of delta phase precipitation on static recrystallization of cold-rolled Inconel 718 alloy in solid solution treatment [J]. J. Iron Steel Res. Int., 2019, 26(2): 148
|
9 |
Gao Y, Zhang D Y, Cao M, et al. Effect of δ phase on high temperature mechanical performances of Inconel 718 fabricated with SLM process [J]. Mater. Sci. Eng., 2019, 767A: 138327
|
10 |
Anderson M, Thielin A L, Bridier F, et al. δ Phase precipitation in Inconel 718 and associated mechanical properties [J]. Mater. Sci. Eng., 2017, 679A: 48
|
11 |
Popovich V A, Borisov E V, Popovich A A, et al. Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting [J]. Mater. Des., 2017, 131: 12
|
12 |
Ram G D J, Reddy A V, Rao K P, et al. Microstructure and tensile properties of Inconel 718 pulsed Nd-YAG laser welds [J]. J. Mater. Process Tech., 2005, 167(1): 73
|
13 |
Lee S C, Chang S H, Tang T P, et al. Improvement in the microstructure and tensile properties of inconel 718 superalloy by HIP treatment [J]. Mater. Trans., 2006, 47(11): 2877
|
14 |
Song Z X, Wang D P, Wu Z S, et al. Ultrahigh cycle fatigue performance of GH4169 alloy by selective laser melting [J]. Mater. Mech. Eng., 2020, 44A(11): 72
|
|
宋宗贤, 王东坡, 吴志生 等. 激光选区熔化成形GH4169合金的超高周疲劳性能 [J]. 机械工程材料, 2020, 44(11): 72
doi: 10.11973/jxgccl202011013
|
15 |
Huang L, Cao Y, Li G H, et al. Microstructure characteristics and mechanical behaviour of a selective laser melted Inconel 718 alloy [J]. J. Mater. Res. Technol., 2020, 9(2): 2440
|
16 |
Kim S, Choi H, Lee J, et al. Room and elevated temperature fatigue crack propagation behavior of Inconel 718 alloy fabricated by laser powder bed fusion [J]. Int. J. Fatigue, 2020, 140: 105802
|
17 |
Zheng Q, Liu T, Wei J B, et al. Temperature dependence in tensile properties and deformation behavior of GH4169 alloy [J]. J. Iron Steel Res. Int., 2023, 30(12): 2566
|
18 |
Maj P, Zdunek J, Gizynski M, et al. Statistical analysis of the Portevin-Le Chatelier effect in Inconel 718 at high temperature [J]. Mater. Sci. Eng., 2014, 619A: 158
|
19 |
Liu M, Cai Y F, Wang Q Y, et al. The low cycle fatigue property, damage mechanism, and life prediction of additively manufactured Inconel 625: Influence of temperature [J]. Fatigue Fract. Eng. Mater. Struct., 2023, 46(10): 3829
|
20 |
Zhang H J, Li C, Guo Q Y, et al. Hot tensile behavior of cold-rolled Inconel 718 alloy at 650 oC: The role of δ it phase [J]. Mater. Sci. Eng., 2018, 722A: 136
|
21 |
Wang Y, Shao W Z, Zhen L, et al. Tensile deformation behavior of superalloy 718 at elevated temperatures [J]. J. Alloy Compd., 2009, 471(1-2): 331
|
22 |
Li W B, Pang J C, Zhang H, et al. The high-cycle fatigue properties of selective laser melted Inconel 718 at room and elevated temperatures [J]. Mater. Sci. Eng., 2022, 836A: 142716
|
23 |
Zhang X Y, Chen Y, Cao L Y, et al. Microstructures and tensile properties of a grain-size gradient nickel- based superalloy [J]. J. Alloy Compd., 2023, 960: 170344
|
24 |
Li Z L, Lu C, Cheng G, et al. Microstructure and mechanical properties of selected laser meled GH4169 molded parts [J]. Appl. Laser, 2019, 39(1): 48
|
|
栗子林, 路 超, 程 格 等. 选区激光熔化GH4169成型件微观组织及力学性能研究 [J]. 应用激光, 2019, 39(1): 48
|
25 |
Hale C L, Rollings W S, Weaver M L. Activation energy calculations for discontinuous yielding in Inconel 718SPF [J]. Mater. Sci. Eng., 2001, 300A(1-2): 153
|
26 |
Prasad K, Sarkar R, Ghosal P, et al. Tensile deformation behaviour of forged disc of IN 718 superalloy at 650 oC [J]. Mater. Des., 2010, 31(9): 4502
|
27 |
Wang X G, Han G M, Cui C Y, et al. On the γ′ precipitates of the normal and inverse Portevin-Le Chatelier effect in a wrought Ni-base superalloy [J]. J. Mater. Sci. Technol., 2019, 35(1): 84
|
28 |
Gopinath K, Gogia A K, Kamat S, et al. Dynamic strain ageing in Ni-base superalloy 720Li [J]. Acta Materialia, 2009, 57(4): 1243
|
29 |
Sarkar A, Nagesha A, Parameswaran P, et al. Insights into dynamic strain aging under cyclic creep with reference to strain burst: Some new observations and mechanisms. Part-1: Mechanistic aspects [J]. Mater. Sci. Eng., 2016, 660A: 213
|
30 |
Pavan A H V, Narayan R L, Li S H, et al. Mechanical behavior and dynamic strain ageing in Haynes®282 superalloy subjected to accelerated ageing [J]. Mater. Sci. Eng., 2022, 832A: 142486
|
31 |
Kamaya M, Wilkinson A J, Titchmarsh J M. Measurement of plastic strain of polycrystalline material by electron backscatter diffraction [J]. Nucl. Eng. Des., 2005, 235(6): 713
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|