Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (2): 113-125    DOI: 10.11901/1005.3093.2024.026
ARTICLES Current Issue | Archive | Adv Search |
Effect of Long-term Thermal Exposure on Microstructure Evolution of Interface Thermal Barrier Coating/DZ411 Ni-based Superalloy
YUAN Hongyuan1, ZHANG Siqian1(), WANG Dong2, ZHANG Yingjian3, MA Li3, YU Minghan2, ZHANG Haoyu1, ZHOU Ge1, CHEN Lijia1
1 School of Material Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2 Superalloys Division, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China
Cite this article: 

YUAN Hongyuan, ZHANG Siqian, WANG Dong, ZHANG Yingjian, MA Li, YU Minghan, ZHANG Haoyu, ZHOU Ge, CHEN Lijia. Effect of Long-term Thermal Exposure on Microstructure Evolution of Interface Thermal Barrier Coating/DZ411 Ni-based Superalloy. Chinese Journal of Materials Research, 2025, 39(2): 113-125.

Download:  HTML  PDF(45814KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Herein, the effect of long term thermal exposure at 900 and 1000 oC on the microstructure variation of the interface MCrAlY thermal barrier coating/DZ411 Ni-based directionally solidified superalloy (IC/S)was studied by means of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). The results indicate that with the extension of thermal exposure time, the substrate beneath the IC/S undergoes recrystallization, the orientation of σ-phase precipitates is 45° respect to the IC/S. Significant differences were observed in the evolution of secondary reaction zone (SRZ) and topologically close-packed (TCP) phases during heating process at 900 oC and 1000 oC. After being exposed at 900 oC for 100 h the granular Cr-rich phase precipitated in the interdiffusion zone (IDZ) composed of chaotically distributed γ'-phase; In contrast, IDZ and SRZ were formed after being exposed at 1000 oC for 100 h, and the precipitates of Cr-rich phase were not significant. After being exposed at 900 oC for 500 h to 2000 h, IDZ and SRZ gradually grow, and the orientation of Cr-rich phase precipitates nearby the recrystallized grain boundary with an angle 45°; However, at 1000 oC the Cr-rich phase precipitates and aggregates below the recrystallized grain boundary, and SRZ gradually degenerates into IDZ. The evolution of interface structure is closely related to the diffusion of elements after long-term heat exposure.

Key words:  metallic materials      Ni-based superalloy      long-term thermal exposure      interface microstructure      coating/substrate interface     
Received:  01 January 2024     
ZTFLH:  TG 132.32  
Fund: National Science and Technology Major Project(J2019-IV-0006-0074);National Science and Technology Major Project(J2019-VI-0010-0124);National Natural Science Foundation of China(52071219);Science Center for Gas Turbine Project(P2021-AB-IV-001-002)
Corresponding Authors:  ZHANG Siqian, Tel: 13700022372, E-mail: sqzhang@alum.imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.026     OR     https://www.cjmr.org/EN/Y2025/V39/I2/113

CoCrAlTiTaWMoCYNi
DZ4119.013.53.04.62.53.51.30.1-Bal.
NiCoCrAlY332210-----0.4Bal.
Table 1  Nominal composition of experimental alloy and coating (mass fraction,%)
Fig.1  (a) cross section morphology of thermal barrier coating/alloy after spraying; (b) CSI cross-sectional morphology and elemental deposition
AlCrCoYONi
β phase14.115.528.80.8-Bal.
γ phase4.127.042.10.3-Bal.
Al2O353.02.22.1-40.8Bal.
Table 2  The composition of each phase in the coating (mass fraction, %)
Fig. 2  BSE image of NiCoCrAlY coating/alloy cross-section after long-term thermal exposure (a) 900 oC-500 h; (b) 1000 oC-500 h; (c) 900 oC-4500 h; (d) 1000 oC-4500 h
Thermal exposure conditionA(Al-Cr-Co-Ni)B(Al-Cr-Co-Ni)C(Al-Cr-Co-Ni)D(Al-Cr-Co-Ni)
900 ℃-500 h6-24-35-339-21-31-39-5-17-19-42
900 ℃-4500 h3-27-38-309-21-32-386-21-33-355-11-18-53
1000 ℃-500 h3-27-38-309-21-32-387-21-33-355-11-18-53
1000 ℃-500 h5-25-33-367-21-31-414-23-33-384-22-30-40
Table 3  Element distribution in each region of Fig.2 (Al, Cr, Co, Ni, %, mass fraction)
Fig. 3  CSI cross-sectional BSE images after exposure for different time at 900 oC 100 h, (b) 200 h, (c) 500 h, (d) 1000 h, (e) 2000 h and (f) 4500 h
Fig.4  Original morphology (a), phase map (b), IPF image (c) and KAM image (d) of the cross-section below CSI after thermal exposure for 100 h at 900 oC
Fig.5  Original morphology (a), phase map (b), IPF image (c) and KAM image (d) of the cross-section below CSI after thermal exposure for 4500 h at 900 oC
Fig.6  TEM images and selected diffraction patterns (SAD) in the interdiffusion zone (a, b) SRZ after 1000 h of thermal exposure at 900 oC and (c, d) SDZ after 1000 h of thermal exposure at 1000 oC
Fig.7  CSI cross-sectional BSE image after thermal exposure for different time at 1000 oC
(a) 100 h, (b) 200 h, (c) 500 h, (d) 1000 h, (e) 2000 h, (f) 4500 h
Fig.8  Original morphology (a), phase map (b), IPF image (c) and KAM image (d) of the cross-section below CSI after thermal exposure for 100 h at 1000 oC
Fig.9  Original morphology (a), phase map (b), IPF image (c) and KAM image (d) of the cross-section below CSI after thermal exposure for 4500 h at 1000 oC
Fig.10  Evolution of thickness of IDZ + SRZ with thermal exposure temperature and time
Fig.11  Schematic diagram of force decomposition in the direction of <001>
1 Zhu Z, Basoalto H, Warnken N, et al. A model for the creep deformation behaviour of nickel-based single crystal superalloys [J]. Acta Mater., 2012, 60(12): 4888
2 Zhang J, Wang L, Wang D, et al. Recent progress in research and development of nickel-based single crystal superalloys [J]. Acta Metall. Sin., 2019, 55(9): 1077
张 健, 王 莉, 王 栋 等. 镍基单晶高温合金的研发进展 [J]. 金属学报, 2019, 55(9): 1077
3 Feng Q, Tong J Y, Zheng Y R, et al. Service induced degradation and rejuvenation of gas turbine blades [J]. Mater. China, 2012, 31(12): 21
冯 强, 童锦艳, 郑运荣 等. 燃气涡轮叶片的服役损伤与修复 [J]. 中国材料进展, 2012, 31(12): 21
4 Wang W, Jiang X W, Gao Z K, et al. Service temperature evaluation based on microstructural degradation of gas turbine blade after cumulative operation for 2700 h [J]. Mater. Mech. Eng., 2019, 43(3): 17
王 威, 姜祥伟, 高志坤 等. 基于累积服役2700 h后某燃气轮机叶片显微组织的退化判断其服役温度 [J]. 机械工程材料, 2019, 43(3): 17
5 Nicholls J R. Advances in coating design for high-performance gas turbines [J]. MRS Bull., 2003, 28(9): 659
6 Peng X, Jiang S M, Gong J, et al. Preparation and hot corrosion behavior of a NiCrAlY + AlNiY composite coating [J]. J. Mater. Sci. Technol., 2016, 32(6): 587
doi: 10.1016/j.jmst.2016.04.017
7 Hejrani E, Sebold D, Nowak W J, et al. Isothermal and cyclic oxidation behavior of free standing MCrAlY coatings manufactured by high-velocity atmospheric plasma spraying [J]. Surf. Coat. Technol., 2017, 313: 191
8 Wang J L, Chen M H, Cheng Y X, et al. Hot corrosion of arc ion plating NiCrAlY and sputtered nanocrystalline coatings on a nickel-based single-crystal superalloy [J]. Corros. Sci., 2017, 123: 27
9 Clarke D R, Levi C G. Materials design for the next generation thermal barrier coatings [J]. Annu. Rev. Mater. Res., 2003, 33: 383
10 Zhang X F, Zhou K S, Wei X, et al. In situ synthesis of α-alumina layer at top yttrium-stabilized zirconia thermal barrier coatings for oxygen barrier [J]. Ceram. Int., 2014, 40: 12703
11 Pint B A, DiStefano J R, Wright I G. Oxidation resistance: one barrier to moving beyond Ni-base superalloys [J]. Mater. Sci. Eng., 2006, 415A(1-2): 255
12 Gleeson B. Thermal barrier coatings for aeroengine applications [J]. J. Propul. Power, 2006, 22(2): 375
13 Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296(5566): 280
pmid: 11951028
14 Zhang P M, Yuan K, Peng R L, et al. Long-term oxidation of MCrAlY coatings at 1000 oC and an Al-activity based coating life criterion [J]. Surf. Coat. Technol., 2017, 332: 12
15 Li W Z, Wang Q M, Bao Z B, et al. Microstructural evolution of the NiCrAlY/CrON duplex coating system and its influence on mechanical properties [J]. Mater. Sci. Eng., 2008, 498A(1-2): 487
16 Bai B, Guo H B, Peng H, et al. Cyclic oxidation and interdiffusion behavior of a NiAlDy/RuNiAl coating on a Ni-based single crystal superalloy [J]. Corros. Sci., 2011, 53(9): 2721
17 Karunaratne M S A, Rae C M F, Reed R C. On the microstructural instability of an experimental nickel-based single-crystal superalloy [J]. Metall. Mater. Trans., 2001, 32A: 2409
18 Elsaß M, Frommherz M, Scholz A, et al. Interdiffusion in MCrAlY coated nickel-base superalloys [J]. Surf. Coat. Technol., 2016, 307: 565
19 Shi L, Xin L, Wang X Y, et al. Influences of MCrAlY coatings on oxidation resistance of single crystal superalloy DD98M and their inter-diffusion behaviors [J]. J. Alloy. Compd., 2015, 649: 515
20 Liang T Q, Guo H B, Peng H, et al. Precipitation phases in the nickel-based superalloy DZ 125 with YSZ/CoCrAlY thermal barrier coating [J]. J. Alloy. Compd., 2011, 509(34): 8542
21 Zhan X, Wang D, Ge Z C, et al. Microstructural evolution of NiCoCrAlY coated directionally solidified superalloy [J]. Surf. Coat. Technol., 2022, 440: 128487
22 Yang L L, Chen M H, Wang J L, et al. Microstructure and composition evolution of a single-crystal superalloy caused by elements interdiffusion with an overlay NiCrAlY coating on oxidation [J]. J. Mater. Sci. Technol., 2020, 45: 49
doi: 10.1016/j.jmst.2019.11.017
23 Ren P, Zhu S L, Wang F H. Spontaneous reaction formation of Cr23C6 diffusion barrier layer between nanocrystalline MCrAlY coating and Ni-base superalloy at high temperature [J]. Corros. Sci., 2015, 99: 219
24 Jiang S M, Xu C Z, Li H Q, et al. High temperature corrosion behaviour of a gradient NiCoCrAlYSi coating I: microstructure evolution [J]. Corros. Sci., 2010, 52(5): 1746
25 Eriksson R, Yuan K, Li X H, et al. MCrAlY coating design based on oxidation–diffusion modelling. Part II: lifing aspects [J]. Surf. Coat. Technol., 2014, 253: 27
26 Yuan K, Eriksson R, Peng R L, et al. MCrAlY coating design based on oxidation-diffusion modelling. Part I: microstructural evolution [J]. Surf. Coat. Technol., 2014, 254: 79
27 Yuan K, Peng R L, Li X H, et al. Some aspects of elemental behaviour in HVOF MCrAlY coatings in high-temperature oxidation [J]. Surf. Coat. Technol., 2015, 261: 86
28 Kang J, Liu Y, Zhou J, et al. Temperature-dependent evolution mechanism of interface microstructure between gradient MCrAlY coatings and nickel-based superalloy [J]. Mater. Des., 2024, 237: 112585
29 Liu L C, Fu S G, Hu Z W, et al. Thermo-mechanical analysis of TBC-film cooling system under high blowing ratio considering the effects of curvature [J]. Surf. Coat. Technol., 2023, 470: 129826
30 Li J M, Jing J, He J, et al. Microstructure evolution and elemental diffusion behavior near the interface of Cr2AlC and single crystal superalloy DD5 at elevated temperatures [J]. Mater. Des., 2020, 193: 108776
31 Liu Y, Zou M, Su H Z, et al. Coating-associated microstructure evolution and elemental interdiffusion behavior at a Mo-rich nickel-based superalloy [J]. Surf. Coat. Technol., 2021, 411: 127005
32 Xie G. The influence of recrystallization on the mechanical properties of DZ125L alloy and the control of recrystallization [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2008
谢 光. 再结晶对DZ125L合金力学性能的影响及再结晶的控制 [D]. 沈阳: 中国科学院金属研究所, 2008
33 Kajihara M, Gust W. Driving force for grain boundary migration during alloying by DIGM and DIR in binary systems [J]. Scr. Mater., 1998, 38(11): 1621
34 Porter A, Ralph B. The recrystallization of nickel-base superalloys [J]. J. Mater. Sci., 1981, 16: 707
35 Sakai T, Shibata M, Murakami H, et al. Microstructural investigation of CoNiCrAlY coated Ni-based single crystal superalloy prepared by LPPS [J]. Mater. Trans., 2006, 47(7): 1665
36 Shi H Y, Zhang M C, Guo J. The recrystallization mechanism of typical Ni-based superalloys [J]. Rare. Metal. Mat. Eng., 2023, 52(1): 63
史宸伊, 张麦仓, 郭晶. 典型镍基高温合金的再结晶机理 [J]. 稀有金属材料与工程, 2023, 52(1): 63
37 Giouse J B, White K, Tromas C. Nanoindentation characterization of the surface mechanical properties of a 17-4PH stainless steel substrate treated with grit blasting and coated with a Cr3C2-NiCr coating [J]. Surf. Coat. Technol., 2019, 368: 119
38 Wu J, Jiang X, Song P, et al. Anisotropy of interface characteristics between NiCoCrAlY coating and a hot corrosion resistant Ni-based single crystal superalloy during thermal exposure at different temperatures [J]. Appl. Surf. Sci., 2020, 532: 147405
39 Jin H X, Zhang J X, Zhang Y J, et al. Effects of the orientation relationships between TCP phases and matrix on the morphologies of TCP phases in Ni-based single crystal superalloys [J]. Mater. Charact., 2022, 183: 111609
40 Meher S, Carroll M C, Pollock T M, et al. Designing nickel base alloys for microstructural stability through low γ-γ′ interfacial energy and lattice misfit [J]. Mater. Des., 2018, 140: 249
41 Goerler J V, Lopez-Galilea I, Roncery L M, et al. Topological phase inversion after long-term thermal exposure of nickel-base superalloys: Experiment and phase-field simulation [J]. Acta Mater., 2017, 124: 151
42 Liu L R, Jin T, Zhao N R, et al. Microstructural evolution of a single crystal nickel-base superalloy during thermal exposure [J]. Mater. Lett., 2003, 57(29): 4540
[1] . Influence of ternary compound biocides on the corrosion behavior of P110 steel under different oil-water ratio environments[J]. 材料研究学报, 2025, (4): 0-0.
[2] RAN Zizuo, ZHANG Shuang, SU Zhaoyi, WANG Yang, ZOU Cunlei, ZHAO Yajun, WANG Zengrui, JIANG Weiwei, DONG Chenxi, DONG Chuang. Cluster-formula-based Composition Optimization of 316 Stainless Steel and Its Experimental Verification[J]. 材料研究学报, 2025, 39(3): 207-216.
[3] ZHANG Huifang, WU Hao, XIAO Chuanmin, LI Qi, XIE Jun, LI Jinguo, WANG Zhenjiang, YU Jinjiang. Effect of Heat Treatment on Microstructure and Tensile Properties of a Typical γʹ-strengthened Co-based Superalloy[J]. 材料研究学报, 2025, 39(3): 198-206.
[4] ZHONG Weijie, JIAO Dongling, LIU Zhongwu, LIU Na, XU Wenyong, LI Zhou, ZHANG Guoqing. High Temperature Oxidation of a HIPed Nickel-based Superalloy[J]. 材料研究学报, 2025, 39(3): 172-184.
[5] HU Pengqin, WANG Dong, LU Yuzhang, ZHANG Jian. Effect of Thermal Processes on Creep Properties of a Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2025, 39(3): 161-171.
[6] YU Xingfu, XI Keyu, ZHANG Hongwei, WANG Quanzhen, HAO Tianci, ZHENG Dongyue, SU Yong. Effect of Post-diffusion Treatment on Microstructure and Properties of Plasma Nitriding 7Cr7Mo2V2Si Cold Work Mold Steel[J]. 材料研究学报, 2025, 39(3): 225-232.
[7] XU Congmin, LI Xueli, FU Anqing, SUN Shuwen, CHEN Zhiqiang, LI Chengchen. Effect of Compound Bactericidal Corrosion Inhibitor on Corrosion Behavior of N80 Steel at Different Temperatures[J]. 材料研究学报, 2025, 39(2): 145-152.
[8] WU Xiaoqi, WAN Hongjiang, MING Hongliang, WANG Jianqiu, KE Wei, HAN En-Hou. Effect of Compression Rate on Hydrogen Embrittlement Sensitivity of X65 Pipeline Steel Based on in-situ Small Punch Test[J]. 材料研究学报, 2025, 39(2): 92-102.
[9] MA Xiuge, WU Qinghui, PANG Jianchao, LIU Zengqian, LI Shouxin, LUO Kailun, ZHANG Zhefeng. Effect of Grain Boundary Misorientation on Tensile Properties of Bi-crystal Superalloy at Ambient and High Temperatures[J]. 材料研究学报, 2025, 39(2): 81-91.
[10] MU Chunhao, CHEN Wenge, YU Tianliang, MA Jiangjiang. Interface Microstructure and Properties of TA2/Q345 Composite Pipes Prepared by Hot Assembling and Diffusion Welding[J]. 材料研究学报, 2025, 39(1): 35-43.
[11] XU Zhanyuan, ZHAO Wei, SHI Xiangshi, ZHANG Zhenyu, WANG Zhonggang, HAN Yong, FAN Jinglian. Effect of Composition Adjustment on Structure and Magnetic Properties of Soft Magnetic MnZn Ferrites[J]. 材料研究学报, 2025, 39(1): 55-62.
[12] DENG Xiaolong, WANG Shanshan, DAI Xinxin, LIU Yi, HUANG Jinzhao. Preparation and Performance of Electrocatalyst of Amorphous FeOOH Covered Layered Double Hydroxide CoFeAl-Heterostructure for Efficient Overall Water Splitting in Alkaline Solution[J]. 材料研究学报, 2025, 39(1): 71-80.
[13] WANG Na, LI Wenbin, PANG Jianchao, CHEN Lijia, GAO Chong, ZOU Chenglu, ZHANG Hui, LI Shouxin, ZHANG Zhefeng. Tensile Properties and Deformation Mechanism of Additive Manufacturing Superalloy at Different Temperatures[J]. 材料研究学报, 2025, 39(1): 1-10.
[14] LI Peiyue, ZHANG Minghui, SUN Wentao, BAO Zhihao, GAO Qi, WANG Yanzhi, NIU Long. Effect of Ce and La on Microstructure and Mechanical Properties of Al-Zn Alloy[J]. 材料研究学报, 2024, 38(9): 651-658.
[15] YIN Yifeng, LU Zhengguan, XU Lei, WU Jie. Hot Isostatic Pressing of GH4099 Alloy Powders and Preparation of Thin-walled Cylinders[J]. 材料研究学报, 2024, 38(9): 669-679.
No Suggested Reading articles found!