Please wait a minute...
Chinese Journal of Materials Research  2025, Vol. 39 Issue (2): 81-91    DOI: 10.11901/1005.3093.2024.046
ARTICLES Current Issue | Archive | Adv Search |
Effect of Grain Boundary Misorientation on Tensile Properties of Bi-crystal Superalloy at Ambient and High Temperatures
MA Xiuge1,2, WU Qinghui3, PANG Jianchao1(), LIU Zengqian1,2, LI Shouxin1, LUO Kailun3, ZHANG Zhefeng1,2
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 AECC Beijing Institute of Aeronautical Materials, Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing 100095, China
Cite this article: 

MA Xiuge, WU Qinghui, PANG Jianchao, LIU Zengqian, LI Shouxin, LUO Kailun, ZHANG Zhefeng. Effect of Grain Boundary Misorientation on Tensile Properties of Bi-crystal Superalloy at Ambient and High Temperatures. Chinese Journal of Materials Research, 2025, 39(2): 81-91.

Download:  HTML  PDF(17265KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A series of the second generation bi-crystal superalloys with specific misorientation grain boundaries (GBs) were prepared by the twin crystal seed method, and then their microstructure of GBs was characterized by means of scanning electron microscopy (SEM), meanwhile their tensile properties were examined comparatively at ambient temperature and 760 oC. Therewith, the effect of GBs misorientation on the tensile properties of single crystal superalloy can be elucidated clearly. Results show that, the tensile properties decrease with the increase of misorientation, but there is a difference in the decreasing trend for tensile properties at different temperature. At ambient temperature, the tensile strength continuously decreases and the elongation is unchanged with the increase of GBs misorientation. However, at 760 oC, the tensile strength is almost unchanged within misorientation below 8°, and decreases rapidly between 8° and 12°, but the elongation decreases rapidly in misorientation ranges of 0°~4° and 8°~12°. With the increase of GBs misorientation, the tensile fracture mechanism changes from cleavage-like fracture to intergranular fracture at 760 oC, but the tensile fracture mechanism is always cleavage fracture at ambient temperature. Finally, an energy model was proposed to qualitatively explain the competitive relationship between the two fracture mechanisms during the tensile fracture process at 760 oC.

Key words:  metallic materials      superalloy      misorientation      tensile behavior      test temperature     
Received:  18 January 2024     
ZTFLH:  TG132.3+2  
Fund: National Natural Science Foundation of China(51871224);National Natural Science Foundation of China(52130002);National Natural Science Foundation of China(52321001);Science Center for Gas Turbine Project(P2022-C-IV-001-001)
Corresponding Authors:  PANG Jianchao, Tel: (024)83978779, E-mail: jcpang@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2024.046     OR     https://www.cjmr.org/EN/Y2025/V39/I2/81

CoCrAlMoWTaReNbHfCNi
94.35.6287.520.50.10.006Bal.
Table 1  Nominal composition of DD6 superalloy (mass fraction, %)
Fig.1  Schematic diagram of two crystal seeds method (a) orientations of seeds crystals, (b) directional solidification
Fig.2  Schematic diagram of tensile sample and metallographic sample (a) sample cutting process, (b) shape and dimension of tensile sample (unit: mm)
Fig.3  Microstructure of GBs of bicrystal samples (a) 0°, (b) 4°, (c) 8°, (d) 12°
Fig.4  Metallographic images (a) and SEM images (b) of cast micropores in bicrystal samples
Fig.5  Tensile strength (a) and elongation to fracture (b) vs. the misorientation at different temperatures
Fig.6  Tensile engineering stress-strain curves of tensile test of bicrystal samples with different misorientations tested at (a) ambient temperature, (b) 760 oC
Fig.7  Tensile fracture of samples of the different misorientations at ambient temperature (a) 0°, (b) 4°, (c) 8°, (d) 12°
Fig.8  Tensile fracture of samples of the different misorientations at 760 ℃ (a) 0°, (b) 4°, (c) 8°, (d) 12°
Fig.9  Tensile fracture at 760 ℃ (a, b) 4°, (c, d) 12°
Fig.10  Tensile strength vs. the GB misorientation for SRR99 at ambient temperature[10]
Fig.11  Effect of GB misorientation on tensile fracture mechanism of DD6 bicrystal samples
(a) cleavage-like fracture, (b) intergranular fracture
Fig.12  A qualitatively description for variations t with the GB misorientation
1 Chang J X, Wang D, Dong J S, et al. Effect of rhenium addition on isothermal oxidation behavior of a nickel-base single crystal superalloy [J]. Chin. J. Mater. Res., 2017, 31(9): 695
doi: 10.11901/1005.3093.2016.575
常剑秀, 王 栋, 董加胜 等. 铼对镍基单晶高温合金恒温氧化行为的影响 [J]. 材料研究学报, 2017, 31(9): 695
doi: 10.11901/1005.3093.2016.575
2 Pollock T M, Tin S. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties [J]. J. Propul. Power, 2006, 22(2): 361
3 Zhang M, Zhang S Q, Wang D, et al. Creep microstructure damage and influence on re-creep behavior for a nickel-based single crystal superalloy [J]. Chin. J. Mater. Res., 2023, 37(6): 417
doi: 10.11901/1005.3093.2021.636
张 敏, 张思倩, 王 栋 等. 一种镍基单晶高温合金的蠕变组织损伤对再蠕变行为的影响 [J]. 材料研究学报, 2023, 37(6): 417
4 Napolitano R E, Schaefer R J. The convergence-fault mechanism for low-angle boundary formation in single-crystal castings [J]. J. Mater. Sci., 2000, 35(7): 1641
5 Han Y, Xue X, Zhang T, et al. Grain boundary character correlated carbide precipitation and mechanical properties of Ni-20Cr-18W-1Mo superalloy [J]. Mater. Sci. Eng., 2016, 667: 391
6 Liu L Y, Yang X F, Zhang B, et al. Engineering failure of single crystal blades based on failure cases [J]. Failure Anal. Prev., 2016, 11(5): 327
刘丽玉, 杨宪锋, 张 兵 等. 从典型失效案例探讨单晶叶片的工程失效问题 [J]. 失效分析与预防, 2016, 11(5): 327
7 Shi Z X, Liu S Z, Zhao J Q, et al. Effect of low angle boundary on high cycle fatigue properties of single crystal superalloy [J]. Trans. Mater. Heat Treat., 2015, 36(suppl.1): 52
史振学, 刘世忠, 赵金乾 等. 小角度晶界对单晶高温合金高周疲劳性能的影响 [J]. 材料热处理学报, 2015, 36(增刊1): 52
8 Cao L, Zhou Y Z, Jin T, et al. Effect of grain boundary angle on stress rupture properties on a Ni-based bicrystal superalloy [J]. Acta Metall. Sin., 2014, 50(1): 11
曹 亮, 周亦胄, 金涛 等. 晶界角度对一种镍基双晶高温合金持久性能的影响 [J]. 金属学报, 2014, 50(1): 11
9 Li X Y, Li P, Zhou Y Z, et al. Effect of misorientation on the tensile properties of SRR99 superalloy bicrystals [J]. Acta Metall. Sin., 2013, 49(3): 351
doi: 10.3724/SP.J.1037.2012.00596
李小阳, 李 鹏, 周亦胄 等. 取向差对SRR99双晶高温合金拉伸性能的影响 [J]. 金属学报, 2013, 49(3): 351
doi: 10.3724/SP.J.1037.2012.00596
10 Zhu G, Liu F, Li X Y, et al. Tensile deformation behaviors and damage mechanisms of SRR99 superalloy bicrystals with different grain boundary misorientations [J]. Adv. Eng. Mater., 2019, 21(2): 1800856
11 Huang M, Zhuo L C, Liu Z L, et al. Misorientation related microstructure at the grain boundary in a nickel-based single crystal superalloy [J]. Mater. Sci. Eng., 2015, 640A: 394
12 Shi D F, Zhang Z J, Yang Y H, et al. High-temperature fatigue strength of grain boundaries with different misorientations in nickel-based superalloy bicrystals [J]. J. Mater. Sci. Technol., 2023, 154: 94
doi: 10.1016/j.jmst.2022.12.068
13 Li J R, Zhao J Q, Liu S Z, et al. Effects of low angle boundaries on the mechanical properties of single crystal superalloy DD6 [A]. Proceedings of the Superalloys 2008 [C]. Warrendale, PA: TMS, 2008: 443
14 Qin J C, Cui R J, Huang Z H, et al. Effect of low angle grain boundaries on mechanical properties of DD5 single crystal Ni-base superalloy [J]. J. Aeronaut. Mater., 2017, 37(3): 24
秦健朝, 崔仁杰, 黄朝晖 等. 小角度晶界对DD5镍基单晶高温合金力学性能的影响 [J]. 航空材料学报, 2017, 37(3): 24
doi: 10.11868/j.issn.1005-5053.2016.000127
15 Wei L, Zhou S G, Sheng N C, et al. Effect of γ′-phase on tensile and stress rupture deformation behavior of high W-containing Ni-based superalloys [J]. Chin. J. Mater. Res., 2023, 37(1): 29
韦 林, 周思耕, 盛乃成 等. γ′相对高钨镍基高温合金拉伸和持久变形行为的影响 [J]. 材料研究学报, 2023, 37(1): 29
16 He Y F, Wang L, Wang D, et al. Effect of hot isostatic pressing on microstructure of a third-generation single crystal superalloy DD33 [J]. Chin. J. Mater. Res., 2022, 36(9): 649
doi: 10.11901/1005.3093.2021.490
何禹锋, 王 莉, 王 栋 等. 热等静压对第三代单晶高温合金DD33显微组织和持久性能的影响 [J]. 材料研究学报, 2022, 36(9): 649
doi: 10.11901/1005.3093.2021.490
17 Guo J T. Materials Science and Engineering for Superalloys [M]. Beijing: Science Press, 2008
郭建亭. 高温合金材料学 [M]. 北京: 科学出版社, 2008
18 Li J R, Shi Z X, Yuan H L, et al. Tensile anisotropy of single crystal superalloy DD6 [J]. J. Mater. Eng., 2008, (12): 6
李嘉荣, 史振学, 袁海龙 等. 单晶高温合金DD6拉伸性能各向异性 [J]. 材料工程, 2008, (12): 6
19 Zhao J Q, Li J R, Liu S Z, et al. Effects of low angle grain boundaries on tensile properties of single crystal superalloy DD6 [J]. J. Mater. Eng., 2008, (8): 73
赵金乾, 李嘉荣, 刘世忠 等. 小角度晶界对单晶高温合金DD6拉伸性能的影响 [J]. 材料工程, 2008, (8): 73
20 Han M, Yu J, Li J R, et al. Influence of shot peening on tensile properties of DD6 single crystal superalloy [J]. J. Mater. Eng., 2019, 47(8): 169
doi: 10.11868/j.issn.1001-4381.2019.000191
韩 梅, 喻 健, 李嘉荣 等. 喷丸对DD6单晶高温合金拉伸性能的影响 [J]. 材料工程, 2019, 47(8): 169
21 Xiong X H, Quan D M, Dai P D, et al. Tensile behavior of nickel-base single-crystal superalloy DD6 [J]. Mater. Sci. Eng., 2015, 636A: 608
22 Zhang Z J, Zhang P, Li L L, et al. Fatigue cracking at twin boundaries: effects of crystallographic orientation and stacking fault energy [J]. Acta Mater., 2012, 60(6-7): 3113
23 Zhang Z F, Wang Z G. Grain boundary effects on cyclic deformation and fatigue damage [J]. Prog. Mater. Sci., 2008, 53(7): 1025
24 Xu H, Li P, Zhou Y Z, et al. Investigation on in situ tensile behavior of superalloy bicrystals with different GB misorientations [J]. Metall. Mater. Trans., 2014, 45A(9): 3876
25 Yu Z R, Ding X F, Zheng Y R, et al. Misorientation effect of grain boundary on the formation of discontinuous precipitation in second and third generation single crystal superalloys [J]. MATEC Web Conf., 2014, 14: 11006
26 Hu R, Bai G H, Li J S, et al. Precipitation behavior of grain boundary M23C6 and its effect on tensile properties of Ni-Cr-W based superalloy [J]. Mater. Sci. Eng., 2012, 548A: 83
27 Srinivasan R, Eggeler G F, Mills M J. γ-cutting as rate-controlling recovery process during high-temperature and low-stress creep of superalloy single crystals [J]. Acta Mater., 2000, 48: 4867
28 Yu H, Xu W, van der Zwaag S. Microstructure and dislocation structure evolution during creep life of Ni-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2020, 45: 207
doi: 10.1016/j.jmst.2019.11.028
29 Chung Y W, Lee W J. Cyclic plastic strain energy as a damage criterion and environmental effect in Nb-bearing high strength, low alloy steel [J]. Mater. Sci. Eng., 1994, 186A(1-2): 121
30 Fine M E, Bhat S P. A model of fatigue crack nucleation in single crystal iron and copper [J]. Mater. Sci. Eng., 2007, 468-470A: 64
31 Wang K, Zhang W G, Xu J Q, et al. The impact of misorientation on the grain boundary energy in bi-crystal copper: an atomistic simulation study [J]. J. Mol. Model., 2022, 28(2): 47
doi: 10.1007/s00894-022-05037-7 pmid: 35080686
32 Sangid M D, Sehitoglu H, Maier H J, et al. Grain boundary characterization and energetics of superalloys [J]. Mater. Sci. Eng., 2010, 527A(26): 7115
[1] . Influence of ternary compound biocides on the corrosion behavior of P110 steel under different oil-water ratio environments[J]. 材料研究学报, 2025, (4): 0-0.
[2] RAN Zizuo, ZHANG Shuang, SU Zhaoyi, WANG Yang, ZOU Cunlei, ZHAO Yajun, WANG Zengrui, JIANG Weiwei, DONG Chenxi, DONG Chuang. Cluster-formula-based Composition Optimization of 316 Stainless Steel and Its Experimental Verification[J]. 材料研究学报, 2025, 39(3): 207-216.
[3] ZHANG Huifang, WU Hao, XIAO Chuanmin, LI Qi, XIE Jun, LI Jinguo, WANG Zhenjiang, YU Jinjiang. Effect of Heat Treatment on Microstructure and Tensile Properties of a Typical γʹ-strengthened Co-based Superalloy[J]. 材料研究学报, 2025, 39(3): 198-206.
[4] ZHONG Weijie, JIAO Dongling, LIU Zhongwu, LIU Na, XU Wenyong, LI Zhou, ZHANG Guoqing. High Temperature Oxidation of a HIPed Nickel-based Superalloy[J]. 材料研究学报, 2025, 39(3): 172-184.
[5] HU Pengqin, WANG Dong, LU Yuzhang, ZHANG Jian. Effect of Thermal Processes on Creep Properties of a Nickel-based Single Crystal Superalloy[J]. 材料研究学报, 2025, 39(3): 161-171.
[6] YU Xingfu, XI Keyu, ZHANG Hongwei, WANG Quanzhen, HAO Tianci, ZHENG Dongyue, SU Yong. Effect of Post-diffusion Treatment on Microstructure and Properties of Plasma Nitriding 7Cr7Mo2V2Si Cold Work Mold Steel[J]. 材料研究学报, 2025, 39(3): 225-232.
[7] XU Congmin, LI Xueli, FU Anqing, SUN Shuwen, CHEN Zhiqiang, LI Chengchen. Effect of Compound Bactericidal Corrosion Inhibitor on Corrosion Behavior of N80 Steel at Different Temperatures[J]. 材料研究学报, 2025, 39(2): 145-152.
[8] WU Xiaoqi, WAN Hongjiang, MING Hongliang, WANG Jianqiu, KE Wei, HAN En-Hou. Effect of Compression Rate on Hydrogen Embrittlement Sensitivity of X65 Pipeline Steel Based on in-situ Small Punch Test[J]. 材料研究学报, 2025, 39(2): 92-102.
[9] YUAN Hongyuan, ZHANG Siqian, WANG Dong, ZHANG Yingjian, MA Li, YU Minghan, ZHANG Haoyu, ZHOU Ge, CHEN Lijia. Effect of Long-term Thermal Exposure on Microstructure Evolution of Interface Thermal Barrier Coating/DZ411 Ni-based Superalloy[J]. 材料研究学报, 2025, 39(2): 113-125.
[10] MU Chunhao, CHEN Wenge, YU Tianliang, MA Jiangjiang. Interface Microstructure and Properties of TA2/Q345 Composite Pipes Prepared by Hot Assembling and Diffusion Welding[J]. 材料研究学报, 2025, 39(1): 35-43.
[11] XU Zhanyuan, ZHAO Wei, SHI Xiangshi, ZHANG Zhenyu, WANG Zhonggang, HAN Yong, FAN Jinglian. Effect of Composition Adjustment on Structure and Magnetic Properties of Soft Magnetic MnZn Ferrites[J]. 材料研究学报, 2025, 39(1): 55-62.
[12] DENG Xiaolong, WANG Shanshan, DAI Xinxin, LIU Yi, HUANG Jinzhao. Preparation and Performance of Electrocatalyst of Amorphous FeOOH Covered Layered Double Hydroxide CoFeAl-Heterostructure for Efficient Overall Water Splitting in Alkaline Solution[J]. 材料研究学报, 2025, 39(1): 71-80.
[13] WANG Na, LI Wenbin, PANG Jianchao, CHEN Lijia, GAO Chong, ZOU Chenglu, ZHANG Hui, LI Shouxin, ZHANG Zhefeng. Tensile Properties and Deformation Mechanism of Additive Manufacturing Superalloy at Different Temperatures[J]. 材料研究学报, 2025, 39(1): 1-10.
[14] LI Peiyue, ZHANG Minghui, SUN Wentao, BAO Zhihao, GAO Qi, WANG Yanzhi, NIU Long. Effect of Ce and La on Microstructure and Mechanical Properties of Al-Zn Alloy[J]. 材料研究学报, 2024, 38(9): 651-658.
[15] YIN Yifeng, LU Zhengguan, XU Lei, WU Jie. Hot Isostatic Pressing of GH4099 Alloy Powders and Preparation of Thin-walled Cylinders[J]. 材料研究学报, 2024, 38(9): 669-679.
No Suggested Reading articles found!