Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (2): 140-146    DOI: 10.11901/1005.3093.2021.258
ARTICLES Current Issue | Archive | Adv Search |
Mn-doped Co-Al LDHs and its Potential Use for Overall Water Splitting
JI Jinpeng1, LI Guohui1,2(), GENG Fengxia1
1.College of Energy, Soochow University, Suzhou 215123, China
2.School of Chemistry and Chemical Engineering, Zunyi Normal University, Zunyi 563006, China
Cite this article: 

JI Jinpeng, LI Guohui, GENG Fengxia. Mn-doped Co-Al LDHs and its Potential Use for Overall Water Splitting. Chinese Journal of Materials Research, 2022, 36(2): 140-146.

Download:  HTML  PDF(7453KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The layered double-metal Co-Al hydroxide (CoAl LDH) was first prepared via reflux precipitation method with CoCl2·6H2O and AlCl3·6H2O as raw material, and then the heteroelement Mn doped layered double-metal Co-Al hydroxide (Mn-CoAl LDH) was acquired by the same means. When the current density reaches 10 mA·cm-2, the fully hydrolyzable potential of Mn-CoAl LDH in 1 mol/L KOH alkaline electrolyte is 1.66 V, its performance is much better than that of undoped Co-Al layered bimetallic hydroxide (CoAl LDH), Ni2/3S1/3 /Nickel Foam (1.76 V) and commercial Pt/C (1.75 V). These results show that Mn-CoAl LDH catalyst has high activity of hydrogen evolution and oxygen evolution in alkaline environment, and is a kind of low cost and high performance bifunctional electric catalyst

Key words:  inorganic non-metallic materials      catalyst      Mn doping      hydrogen production      oxygen evolution     
Received:  21 April 2021     
ZTFLH:  TQ116.2  
Fund: National Natural Science Foundation of China(51772201);Key Laboratory of Materials Electrochemistry of Guizhou Province(KY2018004);Specialized Research Fund for the Doctoral Program of Higher Education(202013)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.258     OR     https://www.cjmr.org/EN/Y2022/V36/I2/140

Fig.1  XRD patterns of CoAl LDH and Mn-CoAl LDH
Fig.2  SEM images of CoAl LDH
Fig.3  SEM images of Mn-CoAl LDH
SampleMnCoAl
CoAl LDH020.06%11.06%
Mn-CoAl LDH4.54%14.77%11.65%
Table 1  Atomic ratio of metal component in the sample
Fig.4  SEM images of Mn-CoAl LDH (a) and EDX mapping (Total, O, Al, Mn, Co) of Mn-CoAl LDH (b~f)
Fig.5  HER catalytic performance of Mn-CoAl LDH in 1 mol/L aqueous KOH electrolyte
Fig.6  OER catalytic performance of Mn-CoAl LDH in 1 mol/L aqueous KOH electrolyte
Fig.7  Cyclic voltammetry curves at different sweeping speeds from 2 to10 mV·s-1 (a) CoAl LDH, (b) Mn-CoAl LDH and (c) the linear fitting line between the difference value of current density and sweep speed at the median value of CV voltage window, in which the slope of the fitting line represents the double-layer capacitance of the material
Fig.8  Polarization curves of overall water splitting for Mn-CoAl LDH electrode compared with CoAl LDH at a rate of 5 mV·s-1 in 1.0 M aqueous KOH (a) and the constant current curve at the current density of 10 mA·cm-2 (b)
Catalyst

Voltage/V

@10 mA·cm-2

ElectrolyteElectrode

Mn-CoAl LDH

(This work)

1.661 mol/L KOHNi Form
CoAl LDH2.051 mol/L KOHNi Form
Ni2/3Fe1/3 /NF [4]1.761 mol/L KOHNi Form
NiFe LDH/NF[31]1.71 mol/L KOHNi Form
NiFe/NiCo2O4[32]1.671 mol/L KOHNi Form
NiCo2O4 nanowires Array[33]>1.91 mol/L KOHCarbon cloth
Table 2  Comparison of catalytic activity toward overall water splitting in a two-electrode cell with some representative non-noble catalysts
1 Mallouk T E . Divide and conquer [J]. Nat. Chem. 2013, 5: 362
2 Zou X , Zhang Y . Noble metal-free hydrogen evolution catalysts for water splitting [J]. Chem. Soc. Rev. 2015, 44: 5148
3 Gasteiger H A , Marković N M . Just a dream—or future reality [J]. Science. 2009, 324: 48
4 Ma W , Ma R , Wang C X , et al . A superlattice of alternately stacked Ni-Fe hydroxide nanosheets and graphene for efficient splitting of water [J]. ACS Nano. 2015, 9(2): 1977
5 Duan J , Chen S , Jaroniec M , et al . Porous C3N4 nanolayers@N-graphene films as catalyst electrodes for highly efficient hydrogen evolution [J]. ACS Nano. 2015, 9(1): 931
6 Guo Y , Tang J , Henaie J , et al . Assembly of hollow mesoporous nanoarchitectures composed of ultrafine Mo2C nanoparticles on N-doped carbon nanosheets for efficient electrocatalytic reduction of oxygen [J]. Mater. Horiz. 2017, 4: 1171
7 Pei Z , Zhu M S , Huang Y , et al . Dramatically improved energy conversion and storage efficiencies by simultaneously enhancing charge transfer and creating active sites in MnO x /TiO2 nanotube composite electrodes [J]. Nano. Energy 2016, 20: 254
8 Feng L L , Yu G , Wu Y , et al . High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting [J]. J. Am. Chem. Soc. 2015, 137(44): 14023
9 Long X , Li G , Wang Z , et al . Metallic iron-nickel sulfide ultrathin nanosheets as a highly active electrocatalyst for hydrogen evolution reaction in acidic media [J]. J. Am. Chem. Soc. 2015, 137(37): 11900
10 Song F , Hu X . Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis [J]. Nat. Commun. 2014, 5: 4477
11 Lu X , Zhao C . Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities [J]. Nat. Commun. 2015, 6: 6616
12 Yu J , Lv C , Zhao L , et al . Reverse microemulsion-assisted synthesis of NiCo2S4 nanoflakes supported on nickel foam for electrochemical overall water splitting [J]. Adv. Mater. Interfaces 2018, 5(7): 1701396
13 Song G , Wang Z , Sun, J, et al . Electrochem. Commun. ZnCo2S4 nanosheet array anchored on nickel foam as electrocatalyst for electrochemical water splitting [J]. 2019, 105: 106487
14 Wang Z , Liu H , Ge R , et al . Phosphorus-doped Co3O4 nanowire array: a highly efficient bifunctional electrocatalyst for overall water splitting [J]. ACS Catal. 2018, 8(3): 2236
15 Wang Z , Xu W , Chen X , et al . Defect-rich nitrogen doped Co3O4/C porous nanocubes enable high-efficiency bifunctional oxygen electrocatalysis [J]. Adv. Funct. Mater. 2019, 29(33): 1902875
16 Stevevs M B , Trang C D M , Enamn L J , et al . Reactive Fe-sites in Ni/Fe (Oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity [J]. J. Am. Chem. Soc. 2017, 139(33): 11361
17 Liang H , Gandi A N , Xia C , et al . Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications [J]. ACS Energy Lett. 2017, 2(5): 1035
18 Jia Y , Zhang L , Gao G , et al . A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting [J]. Adv. Mater. 2017, 29(17): 1700017
19 Zaffran J , Stevens M B , Trang C D M , et al . Influence of electrolyte cations on Ni(Fe)OOH catalyzed oxygen evolution reaction [J]. Chem. Mater. 2017, 29(11): 4761
20 Shao Q , Wang Y , Yang S Z , et al . Stabilizing and activating metastable nickel nanocrystals for highly efficient hydrogen evolution electrocatalysis [J]. ACS Nano 2018, 12(11): 11625
21 Gao X , Zhang H , Li Q , et al . Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting [J]. Angew. Chem., Int. Ed. 2016, 55(21): 6290
22 Trotochaud L , Young S L , Ranney J K , et al . Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation [J]. J. Am. Chem. Soc. 2014, 136(18): 6744
23 Speck F D , Dettelbach K E , Sherbo P S , et al . On the electrolytic stability of iron-nickel oxides [J]. Chem 2017, 2(4): 590
24 Wang Y , Sheng M Q , Weng W P . Electrocatalytic hydrogen evolution reaction on electrodeposited amorphous Co-W alloy coatings in alkaline solutions [J]. Chinese Journal of Materials Research, 2017, 31(10): 774
王 玉, 盛敏奇, 翁文凭 . 电沉积非晶态Co-W合金镀层在碱性溶液中的电催化析氢研究 [J]. 材料研究学报, 2017, 31(10): 774
25 Evans D G , Slade R C T . Structural aspects of layered double hydroxides [J]. Structure Bonding, 2006, 119: 1
26 Liu Z P , Ma R Z , Osada M , et al . Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies [J]. J. Am. Chem. Soc. 2006, 128(14): 4872
27 Adachi-pagano M , Forano C , Besse J . Synthesis of Al-rich hydrotalcite-like compounds by using the urea hydrolysis reaction-control of size and morphology [J]. Mater Chem, 2003, 13(8): 1988
28 Ambrogi V , Fardella G , Grandolini G , et al . Effect of hydrotalcite-like compounds on the aqueous solubility of some poorly water-soluble drugs [J]. Pharmacy Sci, 2003, 92(7): 1407
29 Juan J , Bravo-Suarez J J , Oyama S T , et al . intercalation of decamolybdodicobaltate (III) anion in layered double hydroxides [J]. Chem Mater, 2004, 16(7): 1214
30 Duan B B , Sui M H , Sheng L . Synthesis and characterization of nano Co-Mn-Al-CO3 layered double hydroxides [J]. Acta Phys.-Chim. Sin. 2012, 4(26): 56
31 Mayer M T , Luo J S , Schreier M , et al . Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant cataly [J]. Science 2014, 345: 1593
32 Zeng S , Wang Z Q , Liu W H , et al . Coupling molecularly ultrathin sheets of NiFe-layered double hydroxide on NiCo2O4 nanowire arrays for highly efficient overall water-splitting activity [J]. ACS Appl. Mater. Interfaces 2017, 9(2): 1488
33 Lu Q , Liu D N , Luo Y L , et al . NiCo2S4 nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity [J]. Nanoscale 2015, 7: 15122
34 Zhang Z L , Wang S Q , Xu B L , et al . Electrocatalytic oxygen evolution performance of high entropy FeCoNiMoCr alloy thin film electrode [J]. Chinese Journal of Materials Research, 2021, 35(3): 193
张泽灵, 王世奇, 徐邦利 等 . FeCoNiMoCr高熵合金薄膜电极的电催化析氧性能 [J]. 材料研究学报, 2021, 35(3): 193
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] LI Hailong, MU Juan, WANG Yuanyuan, GE Shaofan, LIU Chunming, ZHANG Haifeng, ZHU Zhengwang. Preparation and Electrocatalytic Oxygen Evolution Performance of a Novel Porous MnNiCoCrFe High-entropy Alloy as Electrocatalytic Electrode Material[J]. 材料研究学报, 2023, 37(5): 332-340.
[7] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[9] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
No Suggested Reading articles found!