Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (9): 675-684    DOI: 10.11901/1005.3093.2022.509
ARTICLES Current Issue | Archive | Adv Search |
Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH
SHAO Hongmei1(), CUI Yong1, XU Wendi1, ZHANG Wei1, SHEN Xiaoyi2, ZHAI Yuchun2
1.School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110159, China
2.School of Metallurgy, Northeastern University, Shenyang 110819, China
Cite this article: 

SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH. Chinese Journal of Materials Research, 2023, 37(9): 675-684.

Download:  HTML  PDF(14977KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Hollow spherical AlOOH was successfully prepared by template-free hydrothermal method employing Al2(SO4)3 and urea as raw materials. The appropriate preparation conditions were obtained after determining the influence of Al3+/urea molar ratio, hydrothermal temperature, time and Al3+ concentration on the structure and morphology of the prepared AlOOH. The hollow spherical structure consisted of a large number of nanoflakes possesses a high specific surface area and a total pore volume, whose formation is a process involving precipitation, dissolution and recrystallization. Hollow spherical AlOOH exhibits excellent adsorption capacity for Congo red with the adsorption equilibrium of 10 min and the maximal adsorption capacity of 253.81 mg·g-1. The adsorption capacity still maintains a high level after 4 times of recycling. The pseudo-second-order model fits the adsorption process well. Both the Langmuir and Freundlich models fit the adsorption well.

Key words:  inorganic non-metallic materials      hollow spherical AlOOH      template-free hydrothermal      adsorption      formation process     
Received:  20 September 2022     
ZTFLH:  X75  
Fund: National Natural Science Foundation of China(52004165);Foundation Research Project of Liaoning Educational Committee(LJKZ0254);Foundation Research Project of Liaoning Educational Committee(LJKQZ2021056)
Corresponding Authors:  SHAO Hongmei, Tel: 18809893626, E-mail: shaohm@sylu.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.509     OR     https://www.cjmr.org/EN/Y2023/V37/I9/675

Fig.1  XRD patterns and SEM images of AlOOH obtained in conditions of Al3+/urea molar ratios (a) XRD patterns, (b) 1∶1.5, (c) 1∶2, (d) 1∶2.5, (e) 1∶3 and (f) 1∶3.5
Fig.2  XRD patterns and SEM images of specimens obtained at different reaction tempeerature (a) XRD patterns, (b) 120℃, (c) 140℃, (d) 160℃, (e) 200℃ and (f) 220℃
Fig.3  XRD patterns and SEM images of specimens obtained by different reaction time (a) XRD patterns, (b) 1 h, (c) 1.2 h, (d) 1.5 h, (e) 2 h, (f) 3 h, (g) 4 h, (h) 6 h, (i) 8 h, (j) 10 h, (k) 14 h, (l) 16 h
Fig.4  XRD patterns and SEM images of AlOOH obtained by varied Al3+ concentrations (a) XRD patterns, (b) 0.1, (c) 0.3, (d) 0.4, (e) 0.5 and (f) 0.8 mol·L-1
Fig.5  SEM zoom image (a) and N2 adsorption-desorption curves (b) of AlOOH
Fig.6  Schematic formation evolution diagram of hollow spherical AlOOH
Fig.7  Adsorption capacities versus contact time (a) and equilibrium concentration of Congo red (b) of hollow spherical AlOOH
Fig.8  Plots of the Pseudo-second-order model (a) and intra-particle diffusion model (b)

C0

/ mg·g-1

Pseudo-second-order modelIntra-particle-diffusion model
qek2R2ks1ks2ks3R12R22R32
/ mg·g-1/ g·mg-1·min-1mg·g-1·min1/2
10099.380.06360.999990.024.180.0310.97870.9996
150143.670.05370.9999131.605.500.0310.95660.9415
200179.230.05250.9999168.644.800.0610.99290.9926
Table 1  Pseudo-second-order and intra-particle diffusion kinetic parameters of CR adsorption
Fig.9  Langmuir (a) and Freundlich (b) isotherms plots of adsorption of CR
T/KLangmuir isotherm modelFreundlich isotherm model
qmax/k/R2K/1/nR2
mg·g-1L·mg-1(mg·g-1)(L·mg-1)1/n
273207.900.10010.995680.38200.1760.9974
298253.810.10380.991289.58880.2000.9944
323289.860.14430.9916104.86360.2060.9960
Table 2  Fitting parameters of Langmuir and Freundlich adsorption isotherms
T/KΔGΘ/kJ·mol-1ΔHΘ/kJ·mol-1ΔSΘ/J·mol-1·K-1
273-9.973.86950.55
298-11.14
323-12.49
Table 3  Thermodynamic fitting parameters of the adsorption of CR
Fig.10  FT-IR spectra of AlOOH before (a) and after (b) adsorption
Fig. 11  Schematic growth diagram of the mechanism of adsorption
Fig.12  Equilibrium adsorption capacities variation of AlOOH for CR in recycle tests
1 Shen Y L, Li B G. Preparation of magnetic amino acid-functionalized aluminum alginate gel polymer and its super adsorption on azo dyes [J]. Chin. J. Mater. Res., 2022, 36(3): 220
doi: 10.11901/1005.3093.2021.163
申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附 [J]. 材料研究学报, 2022, 36(3): 220
doi: 10.11901/1005.3093.2021.163
2 Lam S M, Kee M W, Sin J C. Influence of PVP surfactant on the morphology and properties of ZnO micro/nanoflowers for dye mixtures and textile wastewater degradation [J]. Mater. Chem. Phys., 2018, 212: 35
doi: 10.1016/j.matchemphys.2018.03.002
3 Sykam N, Jayram N D, Rao G M. Highly efficient removal of toxic organic dyes, chemical solvents and oils by mesoporous exfoliated graphite: Synthesis and mechanism [J]. J. Water Process Eng., 2018, 25: 128
doi: 10.1016/j.jwpe.2018.05.013
4 Yang X R, Liu H Z. Ferrocene-functionalized silsesquioxane-based porous polymer for efficient removal of dyes and heavy metal ions [J]. Chem.-Eur. J., 2018, 24: 13504
doi: 10.1002/chem.201801765 pmid: 29934979
5 Que A Z, Zhu T Y, Zheng Y Y. Preparation of hollow magnetic graphene oxide and its adsorption performance for methylene blue [J]. Chin. J. Mater. Res., 2021, 35(7): 517
doi: 10.11901/1005.3093.2020.579
阙爱珍, 朱桃玉, 郑玉婴. 中空磁性氧化石墨烯的制备及其对亚甲基蓝吸附性能 [J]. 材料研究学报, 2021, 35(7): 517
doi: 10.11901/1005.3093.2020.579
6 Shen X Y, Shao H M, Liu Y, et al. Synthesis and photocatalytic performance of ZnO with flower-like structure from zinc oxide ore [J]. J. Mater. Sci. Technol., 2020, 51: 1
doi: 10.1016/j.jmst.2020.01.062
7 Hamdy M S, Awwad N S, Alshahrani A M. Mesoporous magnesia: synthesis, characteri- zation, adsorption behavior and cytotoxic activity [J]. Mater. Design, 2016, 110: 503
8 Zhang Y F, Ma M Z, Zhang X Y, et al. Synthesis, characterization, and catalytic property of nanosized MgO flakes with different shapes [J]. J. Alloys and Compd., 2014, 590: 373
doi: 10.1016/j.jallcom.2013.12.113
9 Liu Y, Zhang Y C, Xu X F. Hydrothermal synthesis and photocatalytic activity of CdO2 nanocrystals [J]. J. Hazard. Mater., 2009, 163: 1310
doi: 10.1016/j.jhazmat.2008.07.101
10 Vo T K, Park H K, Nam C W, et al. Facile synthesis and characterization of γ-AlOOH/PVA composite granules for Cr(VI) adsorption [J]. J. Ind. Eng. Chem., 2018, 60: 485
doi: 10.1016/j.jiec.2017.11.036
11 Zhou Y, Zeng H C. Adsorption and on-site transformation of transition metal cations on Ni-doped AlOOH nanoflowers for OER electrocatalysis [J]. ACS Sus. Chem. Eng., 2019, 7: 5953
12 Tao W, Zhong H, Pan X B, et al. Removal of fluoride from wastewater solution using Ce-AlOOH with oxalic acid as modification [J]. J. Hazard. Mater., 2020, 384: 121373
doi: 10.1016/j.jhazmat.2019.121373
13 Ma P G, Ding W M, Yuan J L, et al. Total recycle strategy of phosphorus recovery from wastewater using granule chitosan inlaid with γ-AlOOH [J]. Environ. Res., 2020, 184: 109309
doi: 10.1016/j.envres.2020.109309
14 Wu X Y, Zhang B Q, Hu Z S, et al. Additive-free and time-saving microwave hydrothermal synthesis of hollow microspheres structured boehmite [J]. Adv. Powder Technol., 2014, 25(2): 514
doi: 10.1016/j.apt.2013.08.005
15 Cai W Q, Yu J G, Jaroniec M. Template-free synthesis of hierarchical spindle-like γ-Al2O3 materials and their adsorption affinity towards organic and inorganic pollutants in water [J]. J. Mater. Chem., 2010, 20(22): 4587
doi: 10.1039/b924366f
16 Ge T, Jiang Z, Shen L, et al. Synthesis and application of Fe3O4/FeWO4 composite as an efficient and magnetically recoverable visible light-driven photocatalyst for the reduction of Cr(VI) [J]. Sep. Purif. Technol., 2021, 263: 118401
doi: 10.1016/j.seppur.2021.118401
17 Wu X Y, Zhang B Q, Hu Z S. Morphology-controlled hydrothermal synthesis of boehmite via an anions competition method [J]. Powder Technol., 2013, 239: 272
doi: 10.1016/j.powtec.2013.02.023
18 Cai W Q, Yu J G, Mann S. Template-free hydrothermal fabrication of hierarchically organized γ-AlOOH hollow microspheres [J]. Micropor. Mesoporo. Mat., 2009, 122(1-3): 42
doi: 10.1016/j.micromeso.2009.02.003
19 Guo X Z, Yin P A, Yang H. Superb adsorption of organic dyes from aqueous solution on hierarchically porous composites constructed by ZnAl-LDH/Al(OH)3 nanosheets [J]. Micropor. Mesopor. Mat., 2018, 259: 123
doi: 10.1016/j.micromeso.2017.10.003
20 Zhang Y X, Ye Y J, Zhou X B, et al. Monodispersed hollow aluminosilica microsphere @hierarchical γ-AlOOH deposited with or without Fe(OH)3 nanoparticles for efficient adsorption of organic pollutants [J]. J. Mater. Chem. A, 2016, 4(3): 838
doi: 10.1039/C5TA07919E
21 Wang P P, Ye Y X, Liang D W, et al. Layered mesoporous Mg(OH)2/GO nanosheet composite for efficient removal of water contaminants [J]. RSC Adv., 2016, 6(32): 26977
doi: 10.1039/C6RA02914K
22 Li Z F, Du Y, Zhang S Y, et al. Synthesis and characterization of hierarchical γ-AlOOH and γ-Al2O3 microspheres with high adsorption performance for organic dyes [J]. RSC Adv., 2016, 6(92): 89699
doi: 10.1039/C6RA17606B
23 Zheng G Y, Wu C H, Wang J L, et al. Space-confined effect one-pot synthesis of γ-AlO(OH)/MgAl-LDH heterostructures with excellent adsorption performance [J]. Nanoscale Res. Lett., 2019, 14(1): 281
doi: 10.1186/s11671-019-3112-x
24 Tang Z, Liang J L, Li X H, et al. Synthesis of flower-like boehmite (γ-AlOOH) via a one-step ionic liquid-assisted hydrothermal route [J]. J. Solid State Chem., 2013, 202: 305
doi: 10.1016/j.jssc.2013.03.049
25 Yan Z L, Fu L J, Yang H M, et al. Amino-functionalized hierarchical porous SiO2-AlOOH composite nanosheets with enhanced adsorption performance [J]. J. Hazard. Mater., 2018, 344: 1090
doi: 10.1016/j.jhazmat.2017.11.058
26 Zhang H M, Ruan Y, Feng Y, et al. Solvent-free hydrothermal synthesis of gamma-aluminum oxide nanoparticles with selective adsorption of Congo red [J]. J. Colloid Interf. Sci., 2019, 536: 180
doi: S0021-9797(18)31251-7 pmid: 30366183
27 Lei C S, Pi M, Xu D F, et al. Fabrication of hierarchical porous ZnO-Al2O3 microspheres with enhanced adsorption performance [J]. Appl. Surf. Sci., 2017, 426: 360
doi: 10.1016/j.apsusc.2017.07.095
28 Nie L H, Tan Q, Zhu W, et al. Fast adsorption removal of Congo red on hierarchically porous γ-Al2O3 hollow microspheres prepared by microwave-assisted hydrothermal method [J]. Acta Phys. -Chim. Sin., 2015, 31(9): 1815
doi: 10.3866/PKU.WHXB201507201
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[3] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[4] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[5] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[6] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[7] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[8] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[9] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[10] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[11] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[12] YANG Qin, WANG Zhen, FANG Chunjuan, WANG Ruodi, GAO Dahang. Preparation and Adsorption Properties of CMC/AA/CB[8]/BET Gel with Controllable Mechanical Properties[J]. 材料研究学报, 2022, 36(8): 628-634.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!