|
|
Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH |
SHAO Hongmei1(), CUI Yong1, XU Wendi1, ZHANG Wei1, SHEN Xiaoyi2, ZHAI Yuchun2 |
1.School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110159, China 2.School of Metallurgy, Northeastern University, Shenyang 110819, China |
|
Cite this article:
SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH. Chinese Journal of Materials Research, 2023, 37(9): 675-684.
|
Abstract Hollow spherical AlOOH was successfully prepared by template-free hydrothermal method employing Al2(SO4)3 and urea as raw materials. The appropriate preparation conditions were obtained after determining the influence of Al3+/urea molar ratio, hydrothermal temperature, time and Al3+ concentration on the structure and morphology of the prepared AlOOH. The hollow spherical structure consisted of a large number of nanoflakes possesses a high specific surface area and a total pore volume, whose formation is a process involving precipitation, dissolution and recrystallization. Hollow spherical AlOOH exhibits excellent adsorption capacity for Congo red with the adsorption equilibrium of 10 min and the maximal adsorption capacity of 253.81 mg·g-1. The adsorption capacity still maintains a high level after 4 times of recycling. The pseudo-second-order model fits the adsorption process well. Both the Langmuir and Freundlich models fit the adsorption well.
|
Received: 20 September 2022
|
|
Fund: National Natural Science Foundation of China(52004165);Foundation Research Project of Liaoning Educational Committee(LJKZ0254);Foundation Research Project of Liaoning Educational Committee(LJKQZ2021056) |
Corresponding Authors:
SHAO Hongmei, Tel: 18809893626, E-mail: shaohm@sylu.edu.cn
|
1 |
Shen Y L, Li B G. Preparation of magnetic amino acid-functionalized aluminum alginate gel polymer and its super adsorption on azo dyes [J]. Chin. J. Mater. Res., 2022, 36(3): 220
doi: 10.11901/1005.3093.2021.163
|
|
申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附 [J]. 材料研究学报, 2022, 36(3): 220
doi: 10.11901/1005.3093.2021.163
|
2 |
Lam S M, Kee M W, Sin J C. Influence of PVP surfactant on the morphology and properties of ZnO micro/nanoflowers for dye mixtures and textile wastewater degradation [J]. Mater. Chem. Phys., 2018, 212: 35
doi: 10.1016/j.matchemphys.2018.03.002
|
3 |
Sykam N, Jayram N D, Rao G M. Highly efficient removal of toxic organic dyes, chemical solvents and oils by mesoporous exfoliated graphite: Synthesis and mechanism [J]. J. Water Process Eng., 2018, 25: 128
doi: 10.1016/j.jwpe.2018.05.013
|
4 |
Yang X R, Liu H Z. Ferrocene-functionalized silsesquioxane-based porous polymer for efficient removal of dyes and heavy metal ions [J]. Chem.-Eur. J., 2018, 24: 13504
doi: 10.1002/chem.201801765
pmid: 29934979
|
5 |
Que A Z, Zhu T Y, Zheng Y Y. Preparation of hollow magnetic graphene oxide and its adsorption performance for methylene blue [J]. Chin. J. Mater. Res., 2021, 35(7): 517
doi: 10.11901/1005.3093.2020.579
|
|
阙爱珍, 朱桃玉, 郑玉婴. 中空磁性氧化石墨烯的制备及其对亚甲基蓝吸附性能 [J]. 材料研究学报, 2021, 35(7): 517
doi: 10.11901/1005.3093.2020.579
|
6 |
Shen X Y, Shao H M, Liu Y, et al. Synthesis and photocatalytic performance of ZnO with flower-like structure from zinc oxide ore [J]. J. Mater. Sci. Technol., 2020, 51: 1
doi: 10.1016/j.jmst.2020.01.062
|
7 |
Hamdy M S, Awwad N S, Alshahrani A M. Mesoporous magnesia: synthesis, characteri- zation, adsorption behavior and cytotoxic activity [J]. Mater. Design, 2016, 110: 503
|
8 |
Zhang Y F, Ma M Z, Zhang X Y, et al. Synthesis, characterization, and catalytic property of nanosized MgO flakes with different shapes [J]. J. Alloys and Compd., 2014, 590: 373
doi: 10.1016/j.jallcom.2013.12.113
|
9 |
Liu Y, Zhang Y C, Xu X F. Hydrothermal synthesis and photocatalytic activity of CdO2 nanocrystals [J]. J. Hazard. Mater., 2009, 163: 1310
doi: 10.1016/j.jhazmat.2008.07.101
|
10 |
Vo T K, Park H K, Nam C W, et al. Facile synthesis and characterization of γ-AlOOH/PVA composite granules for Cr(VI) adsorption [J]. J. Ind. Eng. Chem., 2018, 60: 485
doi: 10.1016/j.jiec.2017.11.036
|
11 |
Zhou Y, Zeng H C. Adsorption and on-site transformation of transition metal cations on Ni-doped AlOOH nanoflowers for OER electrocatalysis [J]. ACS Sus. Chem. Eng., 2019, 7: 5953
|
12 |
Tao W, Zhong H, Pan X B, et al. Removal of fluoride from wastewater solution using Ce-AlOOH with oxalic acid as modification [J]. J. Hazard. Mater., 2020, 384: 121373
doi: 10.1016/j.jhazmat.2019.121373
|
13 |
Ma P G, Ding W M, Yuan J L, et al. Total recycle strategy of phosphorus recovery from wastewater using granule chitosan inlaid with γ-AlOOH [J]. Environ. Res., 2020, 184: 109309
doi: 10.1016/j.envres.2020.109309
|
14 |
Wu X Y, Zhang B Q, Hu Z S, et al. Additive-free and time-saving microwave hydrothermal synthesis of hollow microspheres structured boehmite [J]. Adv. Powder Technol., 2014, 25(2): 514
doi: 10.1016/j.apt.2013.08.005
|
15 |
Cai W Q, Yu J G, Jaroniec M. Template-free synthesis of hierarchical spindle-like γ-Al2O3 materials and their adsorption affinity towards organic and inorganic pollutants in water [J]. J. Mater. Chem., 2010, 20(22): 4587
doi: 10.1039/b924366f
|
16 |
Ge T, Jiang Z, Shen L, et al. Synthesis and application of Fe3O4/FeWO4 composite as an efficient and magnetically recoverable visible light-driven photocatalyst for the reduction of Cr(VI) [J]. Sep. Purif. Technol., 2021, 263: 118401
doi: 10.1016/j.seppur.2021.118401
|
17 |
Wu X Y, Zhang B Q, Hu Z S. Morphology-controlled hydrothermal synthesis of boehmite via an anions competition method [J]. Powder Technol., 2013, 239: 272
doi: 10.1016/j.powtec.2013.02.023
|
18 |
Cai W Q, Yu J G, Mann S. Template-free hydrothermal fabrication of hierarchically organized γ-AlOOH hollow microspheres [J]. Micropor. Mesoporo. Mat., 2009, 122(1-3): 42
doi: 10.1016/j.micromeso.2009.02.003
|
19 |
Guo X Z, Yin P A, Yang H. Superb adsorption of organic dyes from aqueous solution on hierarchically porous composites constructed by ZnAl-LDH/Al(OH)3 nanosheets [J]. Micropor. Mesopor. Mat., 2018, 259: 123
doi: 10.1016/j.micromeso.2017.10.003
|
20 |
Zhang Y X, Ye Y J, Zhou X B, et al. Monodispersed hollow aluminosilica microsphere @hierarchical γ-AlOOH deposited with or without Fe(OH)3 nanoparticles for efficient adsorption of organic pollutants [J]. J. Mater. Chem. A, 2016, 4(3): 838
doi: 10.1039/C5TA07919E
|
21 |
Wang P P, Ye Y X, Liang D W, et al. Layered mesoporous Mg(OH)2/GO nanosheet composite for efficient removal of water contaminants [J]. RSC Adv., 2016, 6(32): 26977
doi: 10.1039/C6RA02914K
|
22 |
Li Z F, Du Y, Zhang S Y, et al. Synthesis and characterization of hierarchical γ-AlOOH and γ-Al2O3 microspheres with high adsorption performance for organic dyes [J]. RSC Adv., 2016, 6(92): 89699
doi: 10.1039/C6RA17606B
|
23 |
Zheng G Y, Wu C H, Wang J L, et al. Space-confined effect one-pot synthesis of γ-AlO(OH)/MgAl-LDH heterostructures with excellent adsorption performance [J]. Nanoscale Res. Lett., 2019, 14(1): 281
doi: 10.1186/s11671-019-3112-x
|
24 |
Tang Z, Liang J L, Li X H, et al. Synthesis of flower-like boehmite (γ-AlOOH) via a one-step ionic liquid-assisted hydrothermal route [J]. J. Solid State Chem., 2013, 202: 305
doi: 10.1016/j.jssc.2013.03.049
|
25 |
Yan Z L, Fu L J, Yang H M, et al. Amino-functionalized hierarchical porous SiO2-AlOOH composite nanosheets with enhanced adsorption performance [J]. J. Hazard. Mater., 2018, 344: 1090
doi: 10.1016/j.jhazmat.2017.11.058
|
26 |
Zhang H M, Ruan Y, Feng Y, et al. Solvent-free hydrothermal synthesis of gamma-aluminum oxide nanoparticles with selective adsorption of Congo red [J]. J. Colloid Interf. Sci., 2019, 536: 180
doi: S0021-9797(18)31251-7
pmid: 30366183
|
27 |
Lei C S, Pi M, Xu D F, et al. Fabrication of hierarchical porous ZnO-Al2O3 microspheres with enhanced adsorption performance [J]. Appl. Surf. Sci., 2017, 426: 360
doi: 10.1016/j.apsusc.2017.07.095
|
28 |
Nie L H, Tan Q, Zhu W, et al. Fast adsorption removal of Congo red on hierarchically porous γ-Al2O3 hollow microspheres prepared by microwave-assisted hydrothermal method [J]. Acta Phys. -Chim. Sin., 2015, 31(9): 1815
doi: 10.3866/PKU.WHXB201507201
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|