|
|
Preparation and Electrocatalytic Oxygen Evolution Performance of a Novel Porous MnNiCoCrFe High-entropy Alloy as Electrocatalytic Electrode Material |
LI Hailong1,2,3, MU Juan1, WANG Yuanyuan2,3, GE Shaofan2,3, LIU Chunming1, ZHANG Haifeng1,2,3, ZHU Zhengwang2,3( ) |
1.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 2.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3.CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
Cite this article:
LI Hailong, MU Juan, WANG Yuanyuan, GE Shaofan, LIU Chunming, ZHANG Haifeng, ZHU Zhengwang. Preparation and Electrocatalytic Oxygen Evolution Performance of a Novel Porous MnNiCoCrFe High-entropy Alloy as Electrocatalytic Electrode Material. Chinese Journal of Materials Research, 2023, 37(5): 332-340.
|
Abstract A novel three-dimensional porous self-supporting electrode material for electrochemical catalytic oxygen evolution were prepared by chemical etching method from a bulk high-entropy alloy Mn50Fe12.5Co12.5Ni12.5Cr12.5. The electrochemical test results show that the overpotential of the prepared electrode material is only 281 mV at the current of 10 mA·cm-2 and the Tafel slope is 63 mV/dec in an alkaline solution of 1 mol/L KOH, which is better than that of commercial RuO2. At the same time, the working voltage does not increase significantly after continuous operation for 50 h at the current density of 50 mA·cm-2, which reflects the excellent stability during electrocatalytic oxygen evolution process of the Mn-rich high-entropy porous alloy as electrocatalytic electrode material. The Nyquist plots show that the free-standing structure of the bulk HEA catalyst has outstanding electron transfer ability compared with the ordinary supported catalyst.
|
Received: 12 March 2022
|
|
Fund: National Natural Science Foundation of China(52074257) |
1 |
Zhao X, Ma X W, Chen B Y, et al. Challenges toward carbon neutrality in china: strategies and countermeasures [J]. Resour. Conserv. Recy., 2022, 176: 105959
doi: 10.1016/j.resconrec.2021.105959
|
2 |
Mchugh P J, Stergiou A D, Symes M D. Decoupled electrochemical water splitting: from fundamentals to applications [J]. Adv. Energy Mater., 2020, 10(44): 2002453
doi: 10.1002/aenm.v10.44
|
3 |
Sivanantham A, Lee H, Hwang S W, et al. Preparation, electrical and electrochemical characterizations of CuCoNiFeMn high-entropy-alloy for overall water splitting at neutral-pH [J]. J. Mater. Chem. A, 2021, 9(31): 16841
doi: 10.1039/D1TA02621F
|
4 |
Ji J P, Li G H, Geng F X, Mn-doped Co-Al LDHs and its potential use for overall water splitting [J]. Chin. J. Mater. Res., 2022, 36: 140
|
|
嵇锦鹏, 李国辉, 耿凤霞. Mn掺杂Co-Al金属氢氧化物的制备及其全解水电化学性能 [J]. 材料研究学报, 2022, 36: 140
doi: 10.11901/1005.3093.2021.258
|
5 |
Yu Z Y, Duan Y, Feng X Y, et al. Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects [J]. Adv. Mater., 2021, 33(31): 2007100
doi: 10.1002/adma.v33.31
|
6 |
Weiß A, Siebel A, Bernt M, et al. Impact of intermittent operation on lifetime and performance of a PEM water electrolyzer [J]. J. Electrochem. Soc., 2019, 166(8): F487
doi: 10.1149/2.0421908jes
|
7 |
Gao R, Zhu J, Yan D P. Transition metal-based layered double hydroxides for photo(electro)chemical water splitting: a mini review [J]. Nanoscale, 2021, 13(32): 13593
doi: 10.1039/d1nr03409j
pmid: 34477633
|
8 |
Wang M, Zhang L, He Y J, et al. Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting [J]. J. Mater. Chem. A, 2021, 9(9): 5320
doi: 10.1039/D0TA12152E
|
9 |
Wang C, Shang H Y, Li J, et al. Ultralow Ru doping induced interface engineering in MOF derived ruthenium-cobalt oxide hollow nanobox for efficient water oxidation electrocatalysis [J]. Chem. Eng. J., 2021, 420
|
10 |
Reier T, Oezaslan M, Strasser P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials [J]. ACS Catal., 2012, 2(8): 1765
doi: 10.1021/cs3003098
|
11 |
Tian L, Li Z, Xu X N, et al. Advances in noble metal (Ru, Rh, and Ir) doping for boosting water splitting electrocatalysis [J]. J. Mater. Chem. A, 2021, 9(23): 13459
doi: 10.1039/D1TA01108A
|
12 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6(5): 299
doi: 10.1002/(ISSN)1527-2648
|
13 |
Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
doi: 10.1016/j.actamat.2016.08.081
|
14 |
George E P, Raabe D, Ritchie R O. High-entropy alloys [J]. Nat. Rev. Mater., 2019, 4(8): 515
doi: 10.1038/s41578-019-0121-4
|
15 |
He Q F, Tang P H, Chen H A, et al. Understanding chemical short-range ordering/demixing coupled with lattice distortion in solid solution high entropy alloys [J]. Acta Mater., 2021, 216
|
16 |
Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
doi: 10.1016/j.pmatsci.2013.10.001
|
17 |
Zhang Z L, Wang S Q, Xu B L, et al. Electrocatalytic oxygen evolution performance of high entropy FeCoNiMoCr alloy thin film electrode [J]. Chin. J. Mater. Res., 2021, 35 (3): 193
|
|
张泽灵, 王世琦, 徐邦利 等. FeCoNiMoCr高熵合金薄膜电极的电催化析氧性能 [J]. 材料研究学报, 2021, 35: 193
|
18 |
Dai W J, Lu T, Pan Y. Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy [J]. J. Power Sources, 2019, 430: 104
doi: 10.1016/j.jpowsour.2019.05.030
|
19 |
Katiyar N K, Biswas K, Yeh J W, et al. A perspective on the catalysis using the high entropy alloys [J]. Nano Energy, 2021, 88: 106261
doi: 10.1016/j.nanoen.2021.106261
|
20 |
Xie P F, Yao Y G, Huang Z N, et al. Highly efficient decomposition of ammonia using high-entropy alloy catalysts [J]. Nat. Commun., 2019, 10: 4011
doi: 10.1038/s41467-019-11848-9
pmid: 31488814
|
21 |
Cui X D, Zhang B L, Zeng C Y, et al. Electrocatalytic activity of high-entropy alloys toward oxygen evolution reaction [J]. Mrs. Commun., 2018, 8(3): 1230
doi: 10.1557/mrc.2018.111
|
22 |
Nellaiappan S, Katiyar N K, Kumar R, et al. High-entropy alloys as catalysts for the CO2 and CO reduction reactions: experimental realization [J]. ACS Catal., 2020, 10(6): 3658
doi: 10.1021/acscatal.9b04302
|
23 |
Chen Z J, Zhang T, Gao X Y, et al. Engineering microdomains of oxides in high-entropy alloy electrodes toward efficient oxygen evolution [J]. Adv. Mater., 2021, 33(33): 2101845
doi: 10.1002/adma.v33.33
|
24 |
Ye L, Wang J L, Zhang Y Q, et al. A self-supporting electrode with in-situ partial transformation of Fe-MOF into amorphous NiFe-LDH for efficient oxygen evolution reaction [J]. Appl. Surf. Sci., 2021, 556: 149781
doi: 10.1016/j.apsusc.2021.149781
|
25 |
Paulus U A, Wokaun A, Scherer G G, et al. Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes [J]. Electrochim. Acta, 2002, 47(22): 3787
doi: 10.1016/S0013-4686(02)00349-3
|
26 |
Li H J, He Y, He T, et al. In-situ transformational mycelium-like metal phosphides-encapsulated carbon nanotubes coating on the stainless steel mesh as robust self-supporting electrocatalyst for water splitting [J]. Appl. Surf. Sci., 2021, 549: 149227
doi: 10.1016/j.apsusc.2021.149227
|
27 |
Zhang G L, Ming K S, Kang J L, et al. High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction [J]. Electrochim. Acta, 2018, 279: 19
doi: 10.1016/j.electacta.2018.05.035
|
28 |
Jothi V R, Karuppasamy K, Maiyalagan T, et al. Corrosion and alloy engineering in rational design of high current density electrodes for efficient water splitting [J]. Adv. Energy Mater., 2020, 10(24): 1904020
doi: 10.1002/aenm.v10.24
|
29 |
Zhang Y, Xiao J, Lv Q Y, et al. Self-supported transition metal phosphide based electrodes as high-efficient water splitting cathodes [J]. Front. Chem. Sci. Eng., 2018, 12(3): 494
doi: 10.1007/s11705-018-1732-9
|
30 |
Sun H M, Yan Z H, Liu F M, et al. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution [J]. Adv. Mater., 2020, 32(3): 1806326
doi: 10.1002/adma.v32.3
|
31 |
Ma A L, Zhang L J, Engelberg D, et al. Understanding crystallographic orientation dependent dissolution rates of 90Cu-10Ni alloy: New insights based on AFM/SKPFM measurements and coordination number/electronic structure calculations [J]. Corros. Sci., 2020, 164: 108320
doi: 10.1016/j.corsci.2019.108320
|
32 |
Yi X N, Ma A L, Zhang L M, et al. Crystallographic anisotropy of corrosion rate and surface faceting of polycrystalline 90Cu-10Ni in acidic NaCl solution [J]. Mater. Des., 2022, 215: 110429
doi: 10.1016/j.matdes.2022.110429
|
33 |
Alcalá M D, Real C, Fombella I, et al. Effects of milling time, sintering temperature, Al content on the chemical nature, microhardness and microstructure of mechanochemically synthesized FeCoNiCrMn high entropy alloy [J]. J. Alloy. Compd., 2018, 749: 834
doi: 10.1016/j.jallcom.2018.03.358
|
34 |
Yu P F, Fan N S, Zhang Y Y, et al. Microstructure evolution and composition redistribution of FeCoNiCrMn high entropy alloy under extreme plastic deformation [J]. Mater. Res. Lett., 2022, 10(3): 124
doi: 10.1080/21663831.2021.2023678
|
35 |
Elmaci G, Cerci S, Sunar-Cerci D. The evaluation of the long-term stability of α-MnO2 based OER electrocatalyst in neutral medium by using data processing approach [J]. J. Mol. Struct., 2019, 1195: 632
doi: 10.1016/j.molstruc.2019.06.016
|
36 |
Klaus S, Cai Y, Louie M W, et al. Effects of Fe electrolyte impurities on Ni(OH)2/NiOOH structure and oxygen evolution activity [J]. J. Phys. Chem. Lett., 2015, 119(13): 7243
|
37 |
Deng J, Nellist M R, Stevens M B, et al. Morphology dynamics of single-layered Ni(OH)2/NiOOH nanosheets and subsequent Fe incorporation studied by in situ electrochemical atomic force microscopy [J]. Nano Lett., 2017, 17(11): 6922
doi: 10.1021/acs.nanolett.7b03313
|
38 |
Zhang S Q, Yu T, Wen H, et al. The latest development of CoOOH two-dimensional materials used as OER catalysts [J]. Chem. Commun., 2020, 56(98): 15387
doi: 10.1039/D0CC05876A
|
39 |
Liu X H, Wu J. Coupling interface constructions of NiO-Cr2O3 heterostructures for efficient electrocatalytic oxygen evolution [J]. Electrochim. Acta, 2019, 320: 134577
doi: 10.1016/j.electacta.2019.134577
|
40 |
Wang Z L, Liu W J, Hu Y M, et al. Cr-doped CoFe layered double hydroxides: highly efficient and robust bifunctional electrocatalyst for the oxidation of water and urea [J]. Appl. Catal B Environ., 2020, 272: 118959
doi: 10.1016/j.apcatb.2020.118959
|
41 |
Feng J X, Xu H, Dong Y, et al. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction [J]. Angew. Chem. Int. Edit., 2016, 55(11): 3694
doi: 10.1002/anie.201511447
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|