|
|
Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient |
LI Yanwei1,2, LUO Kang1, YAO Jinhuan1( ) |
1.Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China 2.Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China |
|
Cite this article:
LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient. Chinese Journal of Materials Research, 2023, 37(6): 453-462.
|
Abstract α-Ni(OH)2 materials with micro/nano hierarchical structure were prepared by a facile homogeneous precipitation method with sodium dodecyl sulfate (SDS) as accessory ingredient. It was found that the introduction of SDS can refine the grain size of α-Ni(OH)2 and facilitate the formation of micro/nano hierarchical morphology with a more open structure as evidenced by XRD, SEM, FT-IR, TGA, and XPS analysis. Results of electrochemical test demonstrate that the α-Ni(OH)2 sample synthesized with the n(SDS)/n(Ni2+) of 2∶10 exhibits the best lithium ions storage performance. After 40 cycles at the current density of 2 A·g-1 the α-Ni(OH)2 sample maintained a specific capacity of 800 mAh·g-1; even at the high current density of 3 A·g-1 it still delivered a reversible specific capacity of 710 mAh·g-1. Moreover, it shows a significant pseudo-capacitive effect during discharge/charge processes (the pseudo-capacitive contribution to the total stored charge is as high as 84.2% at 0.9 mV·s-1).
|
Received: 11 May 2022
|
|
Fund: National Natural Science Foundation of China(22065010) |
Corresponding Authors:
YAO Jinhuan, Tel: (0773)2538354, E-mail: yaojinhuan@126.com
|
1 |
Gao R Z, Li X D, Liu W F, et al. Synthesis and Li-storage performance of hierarchical spheroid composites of MgFe2O4/C [J]. Chin. J. Mater. Res., 2018, 32(9): 713
|
|
高荣贞, 李晓冬, 刘文凤 等. 分级结构类球形MgFe2O4/C复合材料的制备及其储锂性能 [J]. 材料研究学报, 2018, 32(9): 713
|
2 |
Li L F, Zeng B, Yuan Z P, et al. One step hydrothermal preparation of SnO2@C composite and its lithium storage performance [J]. Chin. J. Mater. Res., 2020, 34(8): 591
|
|
李玲芳, 曾 斌, 原志朋 等. 一步水热法制备纳米SnO2@C复合材料及其储锂性能研究 [J]. 材料研究学报, 2020, 34(8): 591
doi: 10.11901/1005.3093.2019.604
|
3 |
Shen X, Zhang X Q, Ding F, et al. Advanced electrode materials in lithium batteries: Retrospect and prospect [J]. Energy Mater. Adv., 2021, 2021: 1205324
|
4 |
Yao L H, Cao W Q, Zhao J G, et al. Regulating bifunctional flower-like NiFe2O4/graphene for green EMI shielding and lithium ion storage [J]. J. Mater. Sci. Technol., 2022, 127: 48
doi: 10.1016/j.jmst.2022.04.010
|
5 |
Fang S, Bresser D, Passerini S. Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries [J]. Adv. Energy Mater., 2020, 10(1): 1902485
doi: 10.1002/aenm.v10.1
|
6 |
Han C, Cao W Q, Cao M S. Hollow nanoparticle-assembled hierarchical NiCo2O4 nanofibers with enhanced electrochemical performance for lithium-ion batteries [J]. Inorg. Chem. Front., 2020, 7(21): 4101
doi: 10.1039/D0QI00892C
|
7 |
Kim H, Choi W I, Jang Y, et al. Exceptional lithium storage in a Co(OH)2 Anode: Hydride formation [J]. ACS Nano, 2018, 12(3): 2909
doi: 10.1021/acsnano.8b00435
|
8 |
Hu Y Y, Liu Z G, Nam K W, et al. Origin of additional capacities in metal oxide lithium-ion battery electrodes [J]. Nat. Mater., 2013, 12(12): 1130
doi: 10.1038/nmat3784
|
9 |
Lim S H, Park G D, Jung D S, et al. Towards an efficient anode material for Li-ion batteries: understanding the conversion mechanism of nickel hydroxy chloride with Li-ions [J]. J. Mater. Chem., 2020, 8A(4) : 1939
|
10 |
Yao J H, Li Y W, Huang R S, et al. Crucial role of water content on the electrochemical performance of α-Ni(OH)2 as an anode material for lithium-ion batteries [J]. Ionics, 2021, 27(1): 65
doi: 10.1007/s11581-020-03793-1
|
11 |
Li Y W, Pan G L, Xu W Q, et al. Effect of Al substitution on the microstructure and lithium storage performance of nickel hydroxide [J]. J. Power Sources, 2016, 307: 114
doi: 10.1016/j.jpowsour.2015.12.129
|
12 |
Cao W Q, Wang W Z, Shi H L, et al. Hierarchical three-dimensional flower-like Co3O4 architectures with a mesocrystal structure as high capacity anode materials for long-lived lithium-ion batteries [J]. Nano Res., 2018, 11(3): 1437
doi: 10.1007/s12274-017-1759-0
|
13 |
Mahmood N, Tang T Y, Hou Y L. Nanostructured anode materials for lithium ion batteries: Progress, challenge and perspective [J]. Adv. Energy Mater., 2016, 6(17): 1600374
doi: 10.1002/aenm.v6.17
|
14 |
Zheng M B, Tang H, Li L L, et al. Hierarchically nanostructured transition metal oxides for lithium-ion batteries [J]. Adv. Sci., 2018, 5(3): 1700592
doi: 10.1002/advs.v5.3
|
15 |
Inamdar A I, Chavan H S, Aqueel Ahmed A T, et al. Macroporous Cu(OH)2 nanorod network fabricated directly on Cu foil as binder-free Lithium-ion battery anode with ultrahigh capacity [J]. J. Alloys Compd., 2020, 829: 154593
doi: 10.1016/j.jallcom.2020.154593
|
16 |
Delmas C, Tessier C. Stacking faults in the structure of nickel hydroxide: a rationale of its high electrochemical activity [J]. J. Mater. Chem., 1997, 7(8): 1439
doi: 10.1039/a701037k
|
17 |
Zhang Y Q, Tao L, Xie C, et al. Defect engineering on electrode materials for rechargeable batteries [J]. Adv. Mater., 2020, 32(7): 1905923
doi: 10.1002/adma.v32.7
|
18 |
Li Y W, Huang R S, Ji J C, et al. Facile preparation of α-Ni(OH)2/graphene nanosheet composite as a cathode material for alkaline secondary batteries [J]. Ionics, 2019, 25(10): 4787
doi: 10.1007/s11581-019-03053-x
|
19 |
Tzounis L, Herlekar S, Tzounis A, et al. Halloysite nanotubes noncovalently functionalised with SDS anionic surfactant and PS-b-P4VP block copolymer for their effective dispersion in polystyrene as UV-blocking nanocomposite films [J]. J. Nanomater., 2017, 2017: 3852310
|
20 |
Sotiles A R, Gomez N A G, Wypych F. Thermogravimetric analysis of layered double hydroxides intercalated with sulfate and alkaline cations [M6 2+Al3(OH)18] [A +(SO4)2] 12H2O (M 2+=Mn, Mg, Zn; A +=Li, Na, K) [J]. J. Therm. Anal. Calorim., 2020, 140(4): 1715
doi: 10.1007/s10973-019-08955-6
|
21 |
Li Y W, Yao J H, Zhu Y X, et al. Synthesis and electrochemical performance of mixed phase α/β nickel hydroxide [J]. J. Power Sources, 2012, 203: 177
doi: 10.1016/j.jpowsour.2011.11.081
|
22 |
Wu X, Li W, Ke G, et al. Multiple anionic Ni(SO4)0.3(OH)1.4 nanobelts/reduced graphene oxide enabled by enhanced multielectron reactions with superior lithium storage capacity [J]. Chem. Eng. J., 2021, 426: 131863
doi: 10.1016/j.cej.2021.131863
|
23 |
Lim S Y, Lee J H, Kim S, et al. Lattice water for the enhanced performance of amorphous iron phosphate in sodium-ion batteries [J]. ACS Energy Lett., 2017, 2(5): 998
doi: 10.1021/acsenergylett.7b00120
|
24 |
Huang R S, Yao J H, Liang X L, et al. Electrochemical performances of Ni/Al-LDHs/rGO composites prepared by homogeneous precipitation method [J]. J. Liaoning Shihua Univ., 2020, 40(4): 80
|
|
黄任枢, 姚金环, 梁晓丽 等. 均相沉淀法制备Ni/Al-LDHs/rGO复合电极材料的电化学性能 [J]. 辽宁石油化工大学学报, 2020, 40(4): 80
|
25 |
Li L, Dai Y P, Xu Q Q, et al. Interlayer expanded nickel-iron layered double hydroxide by intercalation with sodium dodecyl sulfate for enhanced oxygen evolution reaction [J]. J. Alloys Compd., 2021, 882: 160752
doi: 10.1016/j.jallcom.2021.160752
|
26 |
Samaele N, Amornpitoksuk P, Suwanboon S. Effect of pH on the morphology and optical properties of modified ZnO particles by SDS via a precipitation method [J]. Powder Technol., 2010, 203(2): 243
doi: 10.1016/j.powtec.2010.05.014
|
27 |
Zhang Y, Zhao Y F, An W D, et al. Heteroelement Y-doped α-Ni(OH)2 nanosheets with excellent pseudocapacitive performance [J]. J. Mater. Chem., 2017, 5A(20) : 10039
|
28 |
Yao J H, Huang R S, Jiang J Q, et al. Lithium storage performance of α-Ni(OH)2 regulated by partial interlayer anion exchange [J]. Ionics, 2021, 27(3): 1125
doi: 10.1007/s11581-020-03889-8
|
29 |
Yao J H, Jin T F, Li Y W, et al. Electrochemical performance of Fe2(SO4)3 as a novel anode material for lithium-ion batteries [J]. J. Alloys Compd., 2021, 886: 161238
doi: 10.1016/j.jallcom.2021.161238
|
30 |
Kim H, Lee W, Choi W, et al. Crystal water-assisted additional capacity for nickel hydroxide anode materials [J]. Adv. Funct. Mater., 2022, 32: 2110828
doi: 10.1002/adfm.v32.17
|
31 |
Jin X Y, Li Y W, Yao J H, et al. Enhancing the lithium storage performance of α-Ni(OH)2 by Zn2+ doping [J]. J. Electroanal. Chem., 2022, 922: 116747
doi: 10.1016/j.jelechem.2022.116747
|
32 |
Caballero A, Hernán L, Morales J, et al. Electrochemical properties of ultrasonically prepared Ni(OH)2 nanosheets in lithium cells [J]. J. Power Sources, 2013, 238: 366
doi: 10.1016/j.jpowsour.2013.04.033
|
33 |
Li X, Sun X H, Hu X D, et al. Review on comprehending and enhancing the initial coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries [J]. Nano Energy, 2020, 77: 105143
doi: 10.1016/j.nanoen.2020.105143
|
34 |
Liu C J, Shang W. Studies on electrochemical activity of amorphous anode materials Ni(OH)2 [J]. Rare Metal Mater. Eng., 2006, 35(10): 1522
|
|
刘长久, 尚 伟. 电极材料非晶态氢氧化镍的电化学活性 [J]. 稀有金属材料与工程, 2006, 35(10): 1522
|
35 |
Yao J H, Li Y W, Pan G L, et al. Electrochemical property of hierarchical flower-like α-Ni(OH)2 as an anode material for lithium-ion batteries [J]. Solid State Ionics, 2021, 363: 115595
doi: 10.1016/j.ssi.2021.115595
|
36 |
Shi L L, Chen Y X, He R Y, et al. Graphene-wrapped CoNi-layered double hydroxide microspheres as a new anode material for lithium-ion batteries [J]. Phys. Chem. Chem. Phys., 2018, 20(24): 16437
doi: 10.1039/c8cp01681j
pmid: 29873366
|
37 |
Lu Y J, Du Y J, Li H B. Template-sacrificing synthesis of Ni-Co layered double hydroxides polyhedron as advanced anode for lithium ions battery [J]. Front. Chem., 2020, 8: 581653
doi: 10.3389/fchem.2020.581653
|
38 |
Wang H T, Huang R S, Li C X. Effect of CTAB addition on the lithium storage performance of Ni(OH)2 prepared by homogeneous precipitation method [J]. Guangdong Chemical Industry, 2019, 46(7): 96
|
|
王洪涛, 黄任枢, 黎呈享. CTAB对均相沉淀法制备Ni(OH)2电极材料储锂性能的影响 [J]. 广东化工, 2019, 46(7): 96
|
39 |
Li Y W, Huang R S, Pan G L, et al. High-tap-density Fe-doped nickel hydroxide with enhanced lithium storage performance [J]. ACS Omega, 2019, 4(4): 7759
doi: 10.1021/acsomega.9b00579
pmid: 31459865
|
40 |
Niu K Y, Lin F, Fang L, et al. Structural and chemical evolution of amorphous nickel iron complex hydroxide upon lithiation/delithiation [J]. Chem. Mater., 2015, 27(5): 1583
doi: 10.1021/cm5041375
|
41 |
Choi C, Ashby D S, Butts D M, et al. Achieving high energy density and high power density with pseudocapacitive materials [J]. Nat. Rev. Mater., 2020, 5(1): 5
doi: 10.1038/s41578-019-0142-z
|
42 |
Li Y W, Huang Y, Zheng Y Y, et al. Facile and efficient synthesis of α-Fe2O3 nanocrystals by glucose-assisted thermal decomposition method and its application in lithium ion batteries [J]. J. Power Sources, 2019, 416: 62
doi: 10.1016/j.jpowsour.2019.01.080
|
43 |
Cheah Y L, Gupta N, Pramana S S, et al. Morphology, structure and electrochemical properties of single phase electrospun vanadium pentoxide nanofibers for lithium ion batteries [J]. J. Power Sources, 2011, 196(15): 6465
doi: 10.1016/j.jpowsour.2011.03.039
|
44 |
Yan B, Li X F, Fu X Y, et al. An elaborate insight of lithiation behavior of V2O5 anode [J]. Nano Energy, 2020, 78: 105233
doi: 10.1016/j.nanoen.2020.105233
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|