Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (6): 453-462    DOI: 10.11901/1005.3093.2022.267
ARTICLES Current Issue | Archive | Adv Search |
Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient
LI Yanwei1,2, LUO Kang1, YAO Jinhuan1()
1.Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
2.Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China
Cite this article: 

LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient. Chinese Journal of Materials Research, 2023, 37(6): 453-462.

Download:  HTML  PDF(12354KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

α-Ni(OH)2 materials with micro/nano hierarchical structure were prepared by a facile homogeneous precipitation method with sodium dodecyl sulfate (SDS) as accessory ingredient. It was found that the introduction of SDS can refine the grain size of α-Ni(OH)2 and facilitate the formation of micro/nano hierarchical morphology with a more open structure as evidenced by XRD, SEM, FT-IR, TGA, and XPS analysis. Results of electrochemical test demonstrate that the α-Ni(OH)2 sample synthesized with the n(SDS)/n(Ni2+) of 2∶10 exhibits the best lithium ions storage performance. After 40 cycles at the current density of 2 A·g-1 the α-Ni(OH)2 sample maintained a specific capacity of 800 mAh·g-1; even at the high current density of 3 A·g-1 it still delivered a reversible specific capacity of 710 mAh·g-1. Moreover, it shows a significant pseudo-capacitive effect during discharge/charge processes (the pseudo-capacitive contribution to the total stored charge is as high as 84.2% at 0.9 mV·s-1).

Key words:  inorganic non-metallic materials      nickel hydroxide      homogeneous precipitation method      anode materials      sodium dodecyl sulfate      lithium-ion batteries     
Received:  11 May 2022     
ZTFLH:  TQ152  
Fund: National Natural Science Foundation of China(22065010)
Corresponding Authors:  YAO Jinhuan, Tel: (0773)2538354, E-mail: yaojinhuan@126.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.267     OR     https://www.cjmr.org/EN/Y2023/V37/I6/453

Fig.1  XRD patterns (a) and TGA plots (b) of the series of Ni(OH)2 samples prepared with different amounts of SDS; FT-IR spectra of the NS-0 and NS-20 samples (c); high resolution Ni 2p XPS spectra of NS-0 and NS-20 samples (d,e) and high resolution S 2p XPS spectrum of NS-20 sample (f)
SamplesCrystal plane2θ / (o)

Interlayer distance

/ nm

Average grain size

/ nm

NS-0(001)12.210.72435.6
NS-10(001)12.100.73243.2
NS-20(001)12.060.73353.0
NS-30(001)12.050.73383.0
Table 1  Lattice parameters and average grain size of samples with different SDS additions
Fig.2  SEM images of NS-0 (a~c), NS-10 (d~f), NS-20 (g~i), and NS-30 (j~l) samples
Fig.3  CV curves of NS-0 (a), NS-10 (b), NS-20 (c), and NS-30 (d) samples at the scan rate of 0.1 mV·s-1; comparison of cycling performance of the four samples (e); charge/discharge curves of NS-0 (f) and NS-20 (g) samples in selected cycles
Materials

Current density

/ A·g-1

Specific discharge capacity

/ mAh·g-1

Voltage window

/ V vs. Li/Li+

Reference
NS-202.0800 mAh·g-1 after 40 cycles0~3.0This work
α-Ni(OH)21.0743 mAh·g-1 after 50 cycles0~3.0[35]
Co-Ni-LDH0.05450.4 mAh·g-1 after 40 cycles0~3.0[36]
Ni-Co-LDH0.1335.4 mAh·g-1 after 50 cycles0~3.0[37]
Ni(OH)2-CTAB0.5952 mAh·g-1 after 25 cycles0~3.0[38]
Fe-Ni-LDH0.21080 mAh·g-1 after 30 cycles0~3.0[39]
Ni- Fe-OH0.85540 mAh·g-1 after 50 cycles0~3.0[40]
Ni(OH)Cl0.21236 mAh·g-1 after 150 cycles0~3.0[9]
Table 2  Comparison of the cycling performance of the NS-20 with other previously reported nickel hydroxide-based anode materials for LIBs
Fig.4  Comparison of magnification performance of four samples (a);charge and discharge curves of NS-0 (b), NS-20 (c) and NS-30 (d) samples at different current densities
Fig.5  CV curves of NS-0 (a) and (b) NS-20 samples at various scan rates; CV curve of NS-20 at 0.5 mV·s-1 (the region filled with blue color corresponds to pseudocapacitive effect) (c); pseudocapacitance contribution percentage diagram of NS-10 (d), NS-20 (e) and NS-30 (f) samples at different scanning speeds
Fig.6  Nyquist plots (a) and Bode plots (b) of NS-0, NS-10, NS-20 and NS-30 samples after 20 discharge/charge cycles,equivalent circuit (c)
1 Gao R Z, Li X D, Liu W F, et al. Synthesis and Li-storage performance of hierarchical spheroid composites of MgFe2O4/C [J]. Chin. J. Mater. Res., 2018, 32(9): 713
高荣贞, 李晓冬, 刘文凤 等. 分级结构类球形MgFe2O4/C复合材料的制备及其储锂性能 [J]. 材料研究学报, 2018, 32(9): 713
2 Li L F, Zeng B, Yuan Z P, et al. One step hydrothermal preparation of SnO2@C composite and its lithium storage performance [J]. Chin. J. Mater. Res., 2020, 34(8): 591
李玲芳, 曾 斌, 原志朋 等. 一步水热法制备纳米SnO2@C复合材料及其储锂性能研究 [J]. 材料研究学报, 2020, 34(8): 591
doi: 10.11901/1005.3093.2019.604
3 Shen X, Zhang X Q, Ding F, et al. Advanced electrode materials in lithium batteries: Retrospect and prospect [J]. Energy Mater. Adv., 2021, 2021: 1205324
4 Yao L H, Cao W Q, Zhao J G, et al. Regulating bifunctional flower-like NiFe2O4/graphene for green EMI shielding and lithium ion storage [J]. J. Mater. Sci. Technol., 2022, 127: 48
doi: 10.1016/j.jmst.2022.04.010
5 Fang S, Bresser D, Passerini S. Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries [J]. Adv. Energy Mater., 2020, 10(1): 1902485
doi: 10.1002/aenm.v10.1
6 Han C, Cao W Q, Cao M S. Hollow nanoparticle-assembled hierarchical NiCo2O4 nanofibers with enhanced electrochemical performance for lithium-ion batteries [J]. Inorg. Chem. Front., 2020, 7(21): 4101
doi: 10.1039/D0QI00892C
7 Kim H, Choi W I, Jang Y, et al. Exceptional lithium storage in a Co(OH)2 Anode: Hydride formation [J]. ACS Nano, 2018, 12(3): 2909
doi: 10.1021/acsnano.8b00435
8 Hu Y Y, Liu Z G, Nam K W, et al. Origin of additional capacities in metal oxide lithium-ion battery electrodes [J]. Nat. Mater., 2013, 12(12): 1130
doi: 10.1038/nmat3784
9 Lim S H, Park G D, Jung D S, et al. Towards an efficient anode material for Li-ion batteries: understanding the conversion mechanism of nickel hydroxy chloride with Li-ions [J]. J. Mater. Chem., 2020, 8A(4) : 1939
10 Yao J H, Li Y W, Huang R S, et al. Crucial role of water content on the electrochemical performance of α-Ni(OH)2 as an anode material for lithium-ion batteries [J]. Ionics, 2021, 27(1): 65
doi: 10.1007/s11581-020-03793-1
11 Li Y W, Pan G L, Xu W Q, et al. Effect of Al substitution on the microstructure and lithium storage performance of nickel hydroxide [J]. J. Power Sources, 2016, 307: 114
doi: 10.1016/j.jpowsour.2015.12.129
12 Cao W Q, Wang W Z, Shi H L, et al. Hierarchical three-dimensional flower-like Co3O4 architectures with a mesocrystal structure as high capacity anode materials for long-lived lithium-ion batteries [J]. Nano Res., 2018, 11(3): 1437
doi: 10.1007/s12274-017-1759-0
13 Mahmood N, Tang T Y, Hou Y L. Nanostructured anode materials for lithium ion batteries: Progress, challenge and perspective [J]. Adv. Energy Mater., 2016, 6(17): 1600374
doi: 10.1002/aenm.v6.17
14 Zheng M B, Tang H, Li L L, et al. Hierarchically nanostructured transition metal oxides for lithium-ion batteries [J]. Adv. Sci., 2018, 5(3): 1700592
doi: 10.1002/advs.v5.3
15 Inamdar A I, Chavan H S, Aqueel Ahmed A T, et al. Macroporous Cu(OH)2 nanorod network fabricated directly on Cu foil as binder-free Lithium-ion battery anode with ultrahigh capacity [J]. J. Alloys Compd., 2020, 829: 154593
doi: 10.1016/j.jallcom.2020.154593
16 Delmas C, Tessier C. Stacking faults in the structure of nickel hydroxide: a rationale of its high electrochemical activity [J]. J. Mater. Chem., 1997, 7(8): 1439
doi: 10.1039/a701037k
17 Zhang Y Q, Tao L, Xie C, et al. Defect engineering on electrode materials for rechargeable batteries [J]. Adv. Mater., 2020, 32(7): 1905923
doi: 10.1002/adma.v32.7
18 Li Y W, Huang R S, Ji J C, et al. Facile preparation of α-Ni(OH)2/graphene nanosheet composite as a cathode material for alkaline secondary batteries [J]. Ionics, 2019, 25(10): 4787
doi: 10.1007/s11581-019-03053-x
19 Tzounis L, Herlekar S, Tzounis A, et al. Halloysite nanotubes noncovalently functionalised with SDS anionic surfactant and PS-b-P4VP block copolymer for their effective dispersion in polystyrene as UV-blocking nanocomposite films [J]. J. Nanomater., 2017, 2017: 3852310
20 Sotiles A R, Gomez N A G, Wypych F. Thermogravimetric analysis of layered double hydroxides intercalated with sulfate and alkaline cations [M6 2+Al3(OH)18] [A +(SO4)2] 12H2O (M 2+=Mn, Mg, Zn; A +=Li, Na, K) [J]. J. Therm. Anal. Calorim., 2020, 140(4): 1715
doi: 10.1007/s10973-019-08955-6
21 Li Y W, Yao J H, Zhu Y X, et al. Synthesis and electrochemical performance of mixed phase α/β nickel hydroxide [J]. J. Power Sources, 2012, 203: 177
doi: 10.1016/j.jpowsour.2011.11.081
22 Wu X, Li W, Ke G, et al. Multiple anionic Ni(SO4)0.3(OH)1.4 nanobelts/reduced graphene oxide enabled by enhanced multielectron reactions with superior lithium storage capacity [J]. Chem. Eng. J., 2021, 426: 131863
doi: 10.1016/j.cej.2021.131863
23 Lim S Y, Lee J H, Kim S, et al. Lattice water for the enhanced performance of amorphous iron phosphate in sodium-ion batteries [J]. ACS Energy Lett., 2017, 2(5): 998
doi: 10.1021/acsenergylett.7b00120
24 Huang R S, Yao J H, Liang X L, et al. Electrochemical performances of Ni/Al-LDHs/rGO composites prepared by homogeneous precipitation method [J]. J. Liaoning Shihua Univ., 2020, 40(4): 80
黄任枢, 姚金环, 梁晓丽 等. 均相沉淀法制备Ni/Al-LDHs/rGO复合电极材料的电化学性能 [J]. 辽宁石油化工大学学报, 2020, 40(4): 80
25 Li L, Dai Y P, Xu Q Q, et al. Interlayer expanded nickel-iron layered double hydroxide by intercalation with sodium dodecyl sulfate for enhanced oxygen evolution reaction [J]. J. Alloys Compd., 2021, 882: 160752
doi: 10.1016/j.jallcom.2021.160752
26 Samaele N, Amornpitoksuk P, Suwanboon S. Effect of pH on the morphology and optical properties of modified ZnO particles by SDS via a precipitation method [J]. Powder Technol., 2010, 203(2): 243
doi: 10.1016/j.powtec.2010.05.014
27 Zhang Y, Zhao Y F, An W D, et al. Heteroelement Y-doped α-Ni(OH)2 nanosheets with excellent pseudocapacitive performance [J]. J. Mater. Chem., 2017, 5A(20) : 10039
28 Yao J H, Huang R S, Jiang J Q, et al. Lithium storage performance of α-Ni(OH)2 regulated by partial interlayer anion exchange [J]. Ionics, 2021, 27(3): 1125
doi: 10.1007/s11581-020-03889-8
29 Yao J H, Jin T F, Li Y W, et al. Electrochemical performance of Fe2(SO4)3 as a novel anode material for lithium-ion batteries [J]. J. Alloys Compd., 2021, 886: 161238
doi: 10.1016/j.jallcom.2021.161238
30 Kim H, Lee W, Choi W, et al. Crystal water-assisted additional capacity for nickel hydroxide anode materials [J]. Adv. Funct. Mater., 2022, 32: 2110828
doi: 10.1002/adfm.v32.17
31 Jin X Y, Li Y W, Yao J H, et al. Enhancing the lithium storage performance of α-Ni(OH)2 by Zn2+ doping [J]. J. Electroanal. Chem., 2022, 922: 116747
doi: 10.1016/j.jelechem.2022.116747
32 Caballero A, Hernán L, Morales J, et al. Electrochemical properties of ultrasonically prepared Ni(OH)2 nanosheets in lithium cells [J]. J. Power Sources, 2013, 238: 366
doi: 10.1016/j.jpowsour.2013.04.033
33 Li X, Sun X H, Hu X D, et al. Review on comprehending and enhancing the initial coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries [J]. Nano Energy, 2020, 77: 105143
doi: 10.1016/j.nanoen.2020.105143
34 Liu C J, Shang W. Studies on electrochemical activity of amorphous anode materials Ni(OH)2 [J]. Rare Metal Mater. Eng., 2006, 35(10): 1522
刘长久, 尚 伟. 电极材料非晶态氢氧化镍的电化学活性 [J]. 稀有金属材料与工程, 2006, 35(10): 1522
35 Yao J H, Li Y W, Pan G L, et al. Electrochemical property of hierarchical flower-like α-Ni(OH)2 as an anode material for lithium-ion batteries [J]. Solid State Ionics, 2021, 363: 115595
doi: 10.1016/j.ssi.2021.115595
36 Shi L L, Chen Y X, He R Y, et al. Graphene-wrapped CoNi-layered double hydroxide microspheres as a new anode material for lithium-ion batteries [J]. Phys. Chem. Chem. Phys., 2018, 20(24): 16437
doi: 10.1039/c8cp01681j pmid: 29873366
37 Lu Y J, Du Y J, Li H B. Template-sacrificing synthesis of Ni-Co layered double hydroxides polyhedron as advanced anode for lithium ions battery [J]. Front. Chem., 2020, 8: 581653
doi: 10.3389/fchem.2020.581653
38 Wang H T, Huang R S, Li C X. Effect of CTAB addition on the lithium storage performance of Ni(OH)2 prepared by homogeneous precipitation method [J]. Guangdong Chemical Industry, 2019, 46(7): 96
王洪涛, 黄任枢, 黎呈享. CTAB对均相沉淀法制备Ni(OH)2电极材料储锂性能的影响 [J]. 广东化工, 2019, 46(7): 96
39 Li Y W, Huang R S, Pan G L, et al. High-tap-density Fe-doped nickel hydroxide with enhanced lithium storage performance [J]. ACS Omega, 2019, 4(4): 7759
doi: 10.1021/acsomega.9b00579 pmid: 31459865
40 Niu K Y, Lin F, Fang L, et al. Structural and chemical evolution of amorphous nickel iron complex hydroxide upon lithiation/delithiation [J]. Chem. Mater., 2015, 27(5): 1583
doi: 10.1021/cm5041375
41 Choi C, Ashby D S, Butts D M, et al. Achieving high energy density and high power density with pseudocapacitive materials [J]. Nat. Rev. Mater., 2020, 5(1): 5
doi: 10.1038/s41578-019-0142-z
42 Li Y W, Huang Y, Zheng Y Y, et al. Facile and efficient synthesis of α-Fe2O3 nanocrystals by glucose-assisted thermal decomposition method and its application in lithium ion batteries [J]. J. Power Sources, 2019, 416: 62
doi: 10.1016/j.jpowsour.2019.01.080
43 Cheah Y L, Gupta N, Pramana S S, et al. Morphology, structure and electrochemical properties of single phase electrospun vanadium pentoxide nanofibers for lithium ion batteries [J]. J. Power Sources, 2011, 196(15): 6465
doi: 10.1016/j.jpowsour.2011.03.039
44 Yan B, Li X F, Fu X Y, et al. An elaborate insight of lithiation behavior of V2O5 anode [J]. Nano Energy, 2020, 78: 105233
doi: 10.1016/j.nanoen.2020.105233
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[6] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[7] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[8] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[9] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[10] LIU Dongxuan, CHEN Ping, CAO Xinrong, ZHOU Xue, LIU Ying. Preparation and Electrochemical Properties of Bowl-shaped C@FeS2@NC Composites[J]. 材料研究学报, 2023, 37(1): 1-9.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] ZHAO Chaofeng, ZHENG Xiaoyan, LI Kairui, JIA Shikui, ZHANG Ming, LI Yesheng, WU Ziping. Surface Metallization of Carbon Nanotube Film for Flexible Lithium-ion Batteries with High Output Current[J]. 材料研究学报, 2022, 36(5): 373-380.
No Suggested Reading articles found!