Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (2): 147-151    DOI: 10.11901/1005.3093.2021.252
ARTICLES Current Issue | Archive | Adv Search |
Tensile Properties of Fluorinated Penta-Graphene
SUN Yi, HAN Tongwei(), CAO Shumin, LUO Mengyu
Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China
Cite this article: 

SUN Yi, HAN Tongwei, CAO Shumin, LUO Mengyu. Tensile Properties of Fluorinated Penta-Graphene. Chinese Journal of Materials Research, 2022, 36(2): 147-151.

Download:  HTML  PDF(7628KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The tensile mechanical properties and failure mechanism of fluorinated penta-graphene, as well as the effect of different ratio of fluorinated area on the mechanical property of fluorinated penta-graphene were studied by means of molecular dynamics simulations. The results show that fluorination can change the failure mechanism of penta-graphene. The penta-graphene with low ratio of fluorinated area undergoes structural transformation from pentagon to polygon by external load. However, the fully fluorinated penta-graphene does not undergo structural transformation under tension. The Young's modulus, fracture stress and strain of penta-graphene decrease first and then increased with the increase of the ratio of fluorinated area. When the ratio of fluorinated area is low (<15%), the mechanical parameters are significantly reduced with rising ratio of fluorinated area. Fully fluorination can increase the Young's modulus of penta-graphene by about 29.56%, and greatly reduce the fracture strain, while the fracture stress is equivalent to that of pristine penta-graphene. These results can provide a theoretical basis for effectively adjusting the mechanical properties of two-dimensional nanomaterials such as penta-graphene.

Key words:  foundational discipline in materials science      fluorinated penta-graphene      molecular dynamics      fluorination coverages      mechanical properties      ReaxFF reactive force-field     
Received:  19 April 2021     
ZTFLH:  TB383  
Fund: Major Program of Natural Science Foundation of Jiangsu Higher Education Institutions of China(17KJA130001);Opening Fund of National Center for International Research on Structural Health Management of Critical Components(KFJJ20-02N)
About author:  HAN Tongwei, Tel: (0511)88797036, E-mail: twhan@ujs.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.252     OR     https://www.cjmr.org/EN/Y2022/V36/I2/147

Fig.1  Schematic diagram of molecular dynamics simulation model and atomic structure of fluorinated penta-graphene (a) side view and (b) top view of the tensile model of fluorinated penta-graphene; (c) side view and (d) top view of 2×2 supercells of fluorinated penta-graphene
Fig.2  Tensile stress-strain curves of fluorinated penta-graphene with different fluorination coverages
Fig.3  Snapshots of the atomic configuration for the fluorinated penta-graphene with 10% and 100% fluorination coverages at different deformation stages
Fig.4  Young's modulus, fracture stress and strain of fluorinated penta-graphene as a function of fluorination coverages
1 Zhang S H , Zhou J , Wang Q , et al . Penta-graphene: A new carbon allotrope [J]. Proc. Natl. Acad. Sci. USA, 2015, 112(8): 2372.
2 Sun H , Mukherjee S , Singh C V . Mechanical properties of monolayer penta-graphene and phagraphene: a first-principles study [J]. Phys. Chem. Chem. Phys., 2016, 18(38): 26736
3 Xu W , Zhang G , Li B . Thermal conductivity of penta-graphene from molecular dynamics study [J]. J. Chem. Phys., 2015, 143(15): 154703
4 Balandin A A . Thermal properties of graphene and nanostructured carbon materials [J]. Nat. Mater., 2011, 10(8): 569
5 Cranford S W . When is 6 less than 5? Penta- to hexa-graphene transition [J]. Carbon, 2016, 96: 421
6 Han T W , Cao S M , Wang X Y , et al . Mechanical behaviours of penta-graphene and effects of hydrogenation [J]. Mater. Res. Express, 2019, 6(8): 85612
7 Rahaman O , Mortazavi B , Dianat A , et al . Metamorphosis in carbon network: From penta-graphene to biphenylene under uniaxial tension [J]. Flatchem, 2017, 1: 65
8 Zhang Y Y , Pei Q X , Sha Z D , et al . Remarkable enhancement in failure stress and strain of penta-graphene via chemical functionalization [J]. Nano Res., 2017, 10(11): 3865
9 Le M Q . Mechanical properties of penta-graphene, hydrogenated penta-graphene, and penta-CN2 sheets [J]. Comput. Mater. Sci., 2017, 136: 181
10 Wu X F , Varsheny V , Lee J , et al . Hydrogenation of penta-graphene leads to unexpected large improvement in thermal conductivity [J]. Nano Lett., 2016, 16(6): 3925
11 Li X , Zhang S H , Wang F Q , et al . Tuning the electronic and mechanical properties of penta-graphene via hydrogenation and fluorination [J]. Phys. Chem. Chem. Phys., 2016, 18(21): 14191
12 Plimpton S . Fast Parallel Algorithms for Short-Range Molecular Dynamics [J]. J. Comput. Phys., 1995, 117(1): 1
13 van Duin A C T , Dasgupta S , Lorant F , et al . ReaxFF: a reactive force field for hydrocarbons [J]. J. Phys. Chem. A, 2001, 105(41): 9396
14 Zhao Y P . Physical Mechanics of Surfaces and Interfaces [M]. Beijing: Science Press, 2012
赵亚溥 . 表面与界面物理力学 [M]. 北京: 科学出版社, 2012
15 Xu Z , Wang X X , Liang H Y . Molecular dynamics simulation of the strain rate effect and size effect for Cu nanowire [J]. Chin. J. Mater. Res., 2003, 17(3): 262
徐 洲, 王秀喜, 梁海弋 . 铜纳米丝的应变率和尺寸效应的分子动力学模拟 [J]. 材料研究学报, 2003, 17(3): 262
16 Han T W , He P F , Wang J , et al . Strain rate dependences of tensile failure process for single graphene sheet: A molecular dynamics study [J]. Sci. China, Ser. G, 2009, 39(9): 1312
韩同伟, 贺鹏飞, 王 健 等 . 单层石墨烯薄膜拉伸破坏应变率相关性的分子动力学研究 [J]. 中国科学G辑, 2009, 39(9): 1312
17 Zhao Y P . Nano and Mesoscopic Mechanics [M]. Beijing: Science Press, 2014
赵亚溥 . 纳米与介观力学 [M]. 北京: 科学出版社, 2014
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] YANG Dongtian, XIONG Liangyin, LIAO Hongbin, LIU Shi. Improved Design of CLF-1 Steel Based on Thermodynamic Simulation[J]. 材料研究学报, 2023, 37(8): 590-602.
[3] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[4] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[5] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[6] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[7] CHEN Zhipeng, ZHU Zhihao, SONG Mengfan, ZHANG Shuang, LIU Tianyu, DONG Chuang. An Ultra-high-strength Ti-Al-V-Mo-Nb-Zr Alloy Designed from Ti-6Al-4V Cluster Formula[J]. 材料研究学报, 2023, 37(4): 308-314.
[8] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[9] ZHAO Yunmei, ZHAO Hongze, WU Jie, TIAN Xiaosheng, XU Lei. Effect of Heat Treatment on Microstructure and Properties of TIG Welded Joints of Powder Metallurgy Inconel 718 Alloy[J]. 材料研究学报, 2023, 37(3): 184-192.
[10] LIU Dongyang, TONG Guangzhe, GAO Wenli, WANG Weikai. Anisotropy of 2060 Al-Li Alloy Thick Plate[J]. 材料研究学报, 2023, 37(3): 235-240.
[11] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[12] YU Cong, CHEN Leping, JIANG Hongxiang, ZHOU Quan, YANG Chenggang. Effect of Deep Cryogenic-Aging Treatment on Microstructure and Mechanical Properties of 7075 Al-alloy[J]. 材料研究学报, 2023, 37(2): 120-128.
[13] YAN Chunliang, GUO Peng, ZHOU Jingyuan, WANG Aiying. Electrical Properties and Carrier Transport Behavior of Cu Doped Amorphous Carbon Films[J]. 材料研究学报, 2023, 37(10): 747-758.
[14] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[15] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
No Suggested Reading articles found!