Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (10): 781-790    DOI: 10.11901/1005.3093.2022.627
ARTICLES Current Issue | Archive | Adv Search |
Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate
LIU Zhihua1,3,4(), YUE Yuanchao2, QIU Yifan2, BU Xiang1,3,4, YANG Tao1,3,4
1.School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
2.School of Chemistry and Chemical Engineering, Changsha University of Science & Technology, Changsha 410114, China
3.Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
4.Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha 410114, China
Cite this article: 

LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate. Chinese Journal of Materials Research, 2023, 37(10): 781-790.

Download:  HTML  PDF(8457KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nitrate as one of the water pollutants is one of the major environmental problems. Photocatalytic reduction of nitrate nitrogen has attracted a lot of attention because of its high efficiency and environmental friendliness. The g-C3N4/Ag/BiOBr composite photocatalyst was prepared by high temperature calcination, reaction synthesis and photoreduction. The photocatalysts were characterized by SEM, XRD, EPMA、FT-IR, XPS and UV-vis, and the reduction effect of the composite on nitrate nitrogen (50 mg/L) under the irradiation of metal halide lamp was studied. The results showed that when 1g/L g-C3N4/Ag/BiOBr catalyst was used, the nitrate concentration was 2.4 mg/L, and the removal rate was 95.2% after 180 min photoreaction. Compared with g-C3N4, BiOBr and g-C3N4/BiOBr photocatalysts, the removal rates increased by 38.8%, 34.6% and 13.1%, respectively. Nitrogen was the main product in the photocatalytic conversion of nitrate nitrogen. The proportion of N2 in the main products of nitrate nitrogen photocatalyzed by g-C3N4/Ag/BiOBr was the highest (88.0%), and the selectivity of nitrogen was 92.4%. Ag can be used as an electron trapping agent to effectively reduce the recombination of electron-hole pairs in photocatalytic materials. Under the action of silver, the photogenerated electrons of BiOBr are transferred to the valence band of g-C3N4 by silver elemental material, forming a Z-type composite photocatalytic structure. Nitrate nitrogen can be directly oxidized by the composite photocatalyst, and the hole scavenger formic acid can be converted into a strong oxidizing substance (COO.-) under the action of the composite hole, which can further reduce nitrate nitrogen.

Key words:  inorganic non-metallic materials      g-C3N4/Ag/BiOBr      nitrate nitrogen      composite      photocatalysis      nitrogen selectivity     
Received:  25 November 2022     
ZTFLH:  O643  
Fund: Outstanding Youth Program of Hunan Education Department(19B040);Young Teacher Development Program of Changsha University of Science and Technology(2019QJCZ038);Postgraduate Practice Innovation Program of Changsha University of Science and Technology(SJCX202189)
Corresponding Authors:  LIU Zhihua, Tel: 13574872739, E-mail: liuzhihua@csust.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2022.627     OR     https://www.cjmr.org/EN/Y2023/V37/I10/781

Fig.1  XRD patterns of the different photocatalyst
Fig.2  XPS analysis of BiOBr, C3N4 and C3N4-Ag-BiOBr (a) survey spectrum, (b) Bi4f, (c) Br3d, (d) C1s, (e) N1s, (f) O1s, (g) Ag3d
Fig.3  FT-IR analysis of the different photocatalyst
Fig.4  SEM images of BiOBr and Ag/BiOBr (a) g-C3N4, (b) BiOBr, (c) g-C3N4/BiOBr, (d) Ag/g-C3N4, (e) Ag/BiOBr, (f) g-C3N4/Ag/BiOBr
Fig.5  Element mapping of g-C3N4/Ag/BiOBr
Fig.6  UV-vis diffuse reflectance spectra of the different photocatalyst
Fig.7  Influence of the different photocatalyst on nitrate reduction process
Fig.8  Effect of the different photocatalyst on nitrate reduction and its products
PhotocatalystHole scavengerLight sourceRN/%SN2/%Ref.
g-C3N4/Ag/BiOBrFormic acidHalide lamp95.292.4This work
Ag/TiO2Formic acidXe lamp9590[48]
Au/TiO2Oxalic acidHigh-pressure Hg lamp4449.9[49]
0.5TiO2/Ti3C2/g-C3N4Formic acidHigh-pressure Hg lamp93.396.62[29]
Fe-LiNbO3Formic acidHigh-pressure Hg lamp9088[50]
ZnSe/BiVO4Formic acidHigh-pressure Hg lamp89.8491.03[14]
NH2-MIL-101(Fe)/BiVO4Formic acidHigh-pressure Hg lamp94.893.5[51]
Ag/SiO2@cTiO2Formic acidHigh-pressure Hg lamp95.893.6[22]
Table 1  Photocatalytic reduction of nitrate in this work and previous literature studies
Fig.9  Photoreduction mechanism of g-C3N4/Ag/BiOBr photocatalytic materials
1 Suriyaraj S P, Selvakumar R. Advances in nanomaterial based approaches for enhanced fluoride and nitrate removal from contaminated water [J]. RSC Adv., 2016, 6: 10565
doi: 10.1039/C5RA24789F
2 Wei L, Adamson M A S, Vela J. Ni2P-modified Ta3N5 and TaON for photocatalytic nitrate reduction [J]. ChemNanoMat, 2020, 6: 1179
doi: 10.1002/cnma.v6.8
3 Zarei S, Farhadian N, Akbarzadeh R, et al. Fabrication of novel 2D Ag-TiO2/γ-Al2O3/Chitosan nano-composite photocatalyst toward enhanced photocatalytic reduction of nitrate [J]. Int. J. Biol. Macromol., 2020, 145: 926
doi: 10.1016/j.ijbiomac.2019.09.183
4 Ge X H, Fu W Z, Wang Y J, et al. Removal of nitrate nitrogen from water by phosphotungstate-supported TiO2 photocatalytic method [J]. Environ. Sci. Pollut. Res., 2020, 27: 40475
doi: 10.1007/s11356-020-09947-y
5 Qiu Y Y, Zhang L, Mu X T, et al. Overlooked pathways of denitrification in a sulfur-based denitrification system with organic supplementation [J]. Water Res., 2020, 169, 115084
doi: 10.1016/j.watres.2019.115084
6 Ma H, Gao X L, Chen Y H, et al. Fe(II) enhances simultaneous phosphorus removal and denitrification in heterotrophic denitrification by chemical precipitation and stimulating denitrifiers activity [J]. Environ. Pollut., 2021, 287: 117668
doi: 10.1016/j.envpol.2021.117668
7 Zeng D F, Liang K, Guo F, et al. Denitrification performance and microbial community under salinity and MIT stresses for reverse osmosis concentrate treatment [J]. Sep. Purif. Technol., 2020, 242: 116799
doi: 10.1016/j.seppur.2020.116799
8 Wang Z X, Richards D, Singh N. Recent discoveries in the reaction mechanism of heterogeneous electrocatalytic nitrate reduction [J]. Catal. Sci. Technol., 2021, 11: 705
doi: 10.1039/D0CY02025G
9 Vandekerckhove T G L, Kobayashi K, Janda J, et al. Sulfur-based denitrification treating regeneration water from ion exchange at high performance and low cost [J]. Bioresour Technol., 2018, 257: 266
doi: 10.1016/j.biortech.2018.02.047
10 Lim J, Liu C Y, Park J, et al. Structure sensitivity of Pd facets for enhanced electrochemical nitrate reduction to ammonia [J]. ACS Catal., 2021, 11: 7568
doi: 10.1021/acscatal.1c01413
11 Rai R K, Tyagi D, Singh S K. Room-temperature catalytic reduction of aqueous nitrate to Ammonia with Ni nanoparticles immobilized on an Fe3O4@n-SiO2@h-SiO2-NH2 support [J]. Eur. J. Inorg. Chem., 2017, 2017: 2450
doi: 10.1002/ejic.v2017.18
12 Tugaoen H O, Garcia-Segura S, Hristovski K, et al. Challenges in photocatalytic reduction of nitrate as a water treatment technology [J]. Sci. Total Environ., 2017, 599-600: 1524
doi: 10.1016/j.scitotenv.2017.04.238
13 Yang W P, Wang J L, Chen R M, et al. Reaction mechanism and selectivity regulation of photocatalytic nitrate reduction for wastewater purification: progress and challenges [J]. J. Mater. Chem., 2022, 10A: 17357
14 Shi H L, Li C H, Wang L, et al. Photocatalytic reduction of nitrate pollutants by novel Z-scheme ZnSe/BiVO4 heterostructures with high N2 selectivity [J]. Separat. Purificat. Technol., 2022, 300: 121854
doi: 10.1016/j.seppur.2022.121854
15 Zazo J A, García-Muñoz P, Pliego G, et al. Selective reduction of nitrate to N2 using ilmenite as a low cost photo-catalyst [J]. Appl. Catal., 2020, 273B: 118930
16 Anderson J A. Photocatalytic nitrate reduction over Au/TiO2 [J]. Catal. Today, 2011, 175: 316
doi: 10.1016/j.cattod.2011.04.009
17 Zhang F X, Jin R C, Chen J X, et al. High photocatalytic activity and selectivity for nitrogen in nitrate reduction on Ag/TiO2 catalyst with fine silver clusters [J]. J. Catal., 2005, 232: 424
doi: 10.1016/j.jcat.2005.04.014
18 Lucchetti R, Onotri L, Clarizia L, et al. Removal of nitrate and simultaneous hydrogen generation through photocatalytic reforming of glycerol over "in situ" prepared zero-valent nano copper/P25 [J]. Appl. Catal., 2017, 202B: 539
19 Ren H T, Jia S Y, Zou J J, et al. A facile preparation of Ag2O/P25 photocatalyst for selective reduction of nitrate [J]. Appl. Catal., 2015, 176-177B: 53
20 Adamu H, McCue A J, Taylor R S F, et al. Simultaneous photocatalytic removal of nitrate and oxalic acid over Cu2O/TiO2 and Cu2O/TiO2-AC composites [J]. Appl. Catal., 2017, 217B: 181
21 Wang L S, Fu W Z, Zhuge Y P, et al. Synthesis of polyoxometalates (POM)/TiO2/Cu and removal of nitrate nitrogen in water by photocatalysis [J]. Chemosphere, 2021, 278: 130298
doi: 10.1016/j.chemosphere.2021.130298
22 Hou Z A, Chu J F, Liu C, et al. High efficient photocatalytic reduction of nitrate to N2 by Core-shell Ag/SiO2@cTiO2 with synergistic effect of light scattering and surface plasmon resonance [J]. Chem. Eng. J., 2021, 415: 128863
doi: 10.1016/j.cej.2021.128863
23 Imam S S, Adnan R, Kaus N H M. The photocatalytic potential of BiOBr for wastewater treatment: A mini-review [J]. J. Environ. Chem. Eng., 2021, 9(4): 105404
doi: 10.1016/j.jece.2021.105404
24 Fu J W, Yu J G, Jiang C J, et al. g-C3N4-based heterostructured photocatalysts [J]. Adv. Energy Mater, 2018, 8: 1701503
doi: 10.1002/aenm.v8.3
25 Chen P, Liu H J, Cui W, et al. Bi-based photocatalysts for light-driven environmental and energy applications: Structural tuning, reaction mechanisms, and challenges [J]. EcoMat, 2020, 2(3): e12047
doi: 10.1002/eom2.v2.3
26 Meng L Y, Qu Y, Jing L Q. Recent advances in BiOBr-based photocatalysts for environmental remediation [J]. Chin. Chem. Lett., 2021, 32(11): 3265
doi: 10.1016/j.cclet.2021.03.083
27 Vu M H, Sakar M, Nguyen C C, et al. Chemically bonded Ni cocatalyst onto the S doped g-C3N4 nanosheets and their synergistic enhancement in H2 production under sunlight irradiation [J]. ACS Sustainable Chem. Eng., 2018, 6: 4194
doi: 10.1021/acssuschemeng.7b04598
28 Song T, Yu X, Tian N, et al. Preparation, structure and application of g-C3N4/BiOX composite photocatalyst [J]. Int. J. Hydrogen Energy, 2021, 46(2): 1857
doi: 10.1016/j.ijhydene.2020.10.136
29 Zheng R, Li C H, Huang K L, et al. TiO2/Ti3C2 intercalated with g-C3N4 nanosheets as 3D/2D ternary heterojunctions photocatalyst for the enhanced photocatalytic reduction of nitrate with high N2 selectivity in aqueous solution [J]. Inorg. Chem. Front., 2021, 8(10): 2518
doi: 10.1039/D1QI00001B
30 Jaffari Z H, Lam S M, Sin J C, et al. Magnetically recoverable Pd-loaded BiFeO3 microcomposite with enhanced visible light photocatalytic performance for pollutant, bacterial and fungal elimination [J]. Separat. Purificat. Technol., 2020, 236: 116195
doi: 10.1016/j.seppur.2019.116195
31 Yang L W, Liu L J, Xia X F, et al. Preparation of pg-C3N4/BiOBr/Ag composite and photocatalytic degradation of sulfamethoxazole [J]. Environmental Science, 2021, 42(6): 2896
杨利伟, 刘丽君, 夏训峰 等. pg-C3N4/BiOBr/Ag复合材料的制备及其光催化降解磺胺甲噁唑 [J]. 环境科学, 2021, 42(6): 2896
32 Varapragasam S J P, Andriolo J M, Skinner J L, et al. Photocatalytic reduction of aqueous nitrate with hybrid Ag/g-C3N4 under ultraviolet and visible light [J]. ACS Omega, 2021, 6: 34850
doi: 10.1021/acsomega.1c05523 pmid: 34963968
33 Di J, Xia J X, Yin S, et al. A g-C3N4/BiOBr visible-light-driven composite: Synthesis via a reactable ionic liquid and improved photocatalytic activity [J]. RSC Adv., 2013, 3(42): 19624
doi: 10.1039/c3ra42269k
34 Li Z Y, Zhao Y J, Guan Q, et al. Novel direct dual Z-scheme AgBr(Ag)/MIL-101(Cr)/CuFe2O4 for efficient conversion of nitrate to nitrogen [J]. Appl. Surf. Sci., 2020, 508: 145225
doi: 10.1016/j.apsusc.2019.145225
35 He F, He Z J, Xie J L, et al. IR and Raman spectra properties of Bi2O3-ZnO-B2O3-BaO quaternary glass system [J]. Am. J. Analyt. Chem., 2014, 5(16): 1142
36 Zhou C Y, Lai C, Huang D L, et al. Highly porous carbon nitride by supramolecular preassembly of monomers for photocatalytic removal of sulfamethazine under visible light driven [J]. Appl. Catal., 2018, 220B: 202
37 Liu Z S, Bi Y H, Zhao Y L, et al. Synthesis and photocatalytic property of BiOBr/palygorskite composites [J]. Mater. Res. Bull., 2014, 49: 167
doi: 10.1016/j.materresbull.2013.08.068
38 Fu Y H, Liang W, Guo J Q, et al. MoS2 quantum dots decorated g-C3N4/Ag heterostructures for enhanced visible light photocatalytic activity [J]. Appl. Surf. Sci., 2018, 430: 234
doi: 10.1016/j.apsusc.2017.08.042
39 Xin G, Meng Y L. Pyrolysis synthesized g-C3N4 for photocatalytic degradation of methylene blue [J]. J. Chem., 2013, 2013: 187912
40 Kharlamov A, Marina B, Kharlamova G, et al. Features of the synthesis of carbon nitride oxide (g-C3N4)O at urea pyrolysis [J]. Diam. Relat. Mater., 2016, 66: 16
doi: 10.1016/j.diamond.2016.03.012
41 Dai H Z, Gao X C, Liu E Z, et al. Synthesis and characterization of graphitic carbon nitride sub-microspheres using microwave method under mild condition [J]. Diam. Relat. Mater. 2013, 38: 109
doi: 10.1016/j.diamond.2013.06.012
42 Fu Y S, Huang L T, Zhang J L, et al. Ag/g-C3N4 catalyst with superior catalytic performance for the degradation of dyes: a borohydride-generated superoxide radical approach [J]. Nanoscale, 2015, 7: 13723
doi: 10.1039/C5NR03260A
43 Gupta G, Kaur A, Sinha A S K, et al. Photocatalytic degradation of levofloxacin in aqueous phase using Ag/AgBr/BiOBr microplates under visible light [J]. Mater. Res. Bull., 2017, 88: 148
doi: 10.1016/j.materresbull.2016.12.016
44 Lu L F, Kong L, Jiang Z, et al. Visible-light-driven photodegradation of rhodamine B on Ag-modified BiOBr [J]. Catal. Lett., 2012, 142(6): 771
doi: 10.1007/s10562-012-0824-2
45 Yan T J, Yan X Y, Guo R R, et al. Ag/AgBr/BiOBr hollow hierarchical microspheres with enhanced activity and stability for RhB degradation under visible light irradiation [J]. Catal. Commun., 2013, 42: 30
doi: 10.1016/j.catcom.2013.07.022
46 Zheng R, Li C H, Huang K L, et al. In situ synthesis of N-doped TiO2 on Ti3C2 MXene with enhanced photocatalytic activity in the selective reduction of nitrate to N2 [J]. Inorg. Chem. Front., 2022, 9(6): 1195
doi: 10.1039/D1QI01614H
47 Zhang D F, Wang B Q, Gong X B, et al. Selective reduction of nitrate to nitrogen gas by novel Cu2O-Cu0@Fe0 composite combined with HCOOH under UV radiation [J]. Chem. Eng. J., 2019, 359: 1195
doi: 10.1016/j.cej.2018.11.058
48 Sun D C, Yang W Y, Zhou L, et al. The selective deposition of silver nanoparticles onto {1 0 1} facets of TiO2 nanocrystals with co-exposed {0 0 1}/{1 0 1} facets, and their enhanced photocatalytic reduction of aqueous nitrate under simulated solar illumination [J]. Appl. Catal., 2016, 182B: 85
49 Kominami H, Furusho A, Murakami S Y, et al. Effective photocatalytic reduction of nitrate to ammonia in an aqueous suspension of metal-loaded titanium (IV) oxide particles in the presence of oxalic acid [J]. Catal. Lett., 2001, 76: 31
doi: 10.1023/A:1016771908609
50 Li X, Wang S, An H Z, et al. Enhanced photocatalytic reduction of nitrate enabled by Fe-doped LiNbO3 materials in water: Performance and mechanism [J]. Appl. Surf. Sci., 2021, 539: 148257
doi: 10.1016/j.apsusc.2020.148257
51 Shi H L, Li C H, Wang L, et al. Selective reduction of nitrate into N2 by novel Z-scheme NH2-MIL-101(Fe)/BiVO4 heterojunction with enhanced photocatalytic activity [J]. J. Hazardous Mater., 2022, 424: 127711
doi: 10.1016/j.jhazmat.2021.127711
52 Ge L, Han C C, Liu J, et al. Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles [J]. Appl. Catal, 2011, 409-411A: 215
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[4] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[5] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[6] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[7] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[8] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[9] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[10] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[11] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[12] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[13] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[14] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[15] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
No Suggested Reading articles found!