|
|
Design and Preparation of Mn-based Antipervoskite Magnetic Refrigerant Composites with Wide Temperature Range |
LIANG Pengli, YAN Jun( ), WEI Shijie, JIANG Congji, CHEN Yunlin |
Institute of Applied Micro-Nano Materials, School of Science, Beijing Jiaotong University, Beijing 100044, China |
|
Cite this article:
LIANG Pengli, YAN Jun, WEI Shijie, JIANG Congji, CHEN Yunlin. Design and Preparation of Mn-based Antipervoskite Magnetic Refrigerant Composites with Wide Temperature Range. Chinese Journal of Materials Research, 2022, 36(2): 133-139.
|
Abstract Polycrystalline compounds of Mn3Sn1-x Cu x C1-x N x were synthesized by solid-state reaction with Mn3SnC and Mn3CuN as raw materials. The phase transition temperature of Mn3Sn1-x Cu x C1-x N x continuously changes with the variation of the Mn3SnC content. The compounds present platform-shaped magnetic entropy-temperature curves around room temperature. Compared with Mn3SnC, the magnetic cooling temperature range of the compounds changed from 275~285 K to 220~300 K, and the full width at half maximum of magnetic entropy change curve increased from 5 K to 70 K. However, the magnetic entropy of the compounds decreased significantly. The relationship among the maximum of magnetic entropy change, the half-height width of the magnetic entropy change curve for the compounds and the relative cooling power of the monomer materials was acquired. The competition between expanding the cooling temperature range and increasing the magnetic entropy change can be well understood. This quantitative formula is of significance in the field not only for the antiperovskite materials, but also for other magnetic refrigerant composites. In this work a new calculation and prediction method of magnetic refrigerant composites were proposed based on the heat flow curve of monomer material, and it could greatly simplify the design process of composite materials.
|
Received: 15 April 2021
|
|
Fund: National Natural Science Foundation of China(51802014);the Fundamental Research Funds for the Central Universities(2019JBM06 8) |
About author: YAN Jun, Tel: 18701457461, E-mail: yanjun@bjtu.edu.cn
|
1 |
Hu Yiga , Rigun Te , Tegus O . Phase Structure,Magnetism and Magnetocaloric Effect of Gd1- x Ho x TiGe [J]. Journal of the Chinese Rare Earth Society, 2020, 38(5): 617
|
|
胡义嘎, 特利贡, 特古斯 . Gd1- x Ho x TiGe的物相结构和磁性及磁热效应 [J]. 中国稀土学报. 2020, 38(5): 617
|
2 |
Uporov S A , Ryltsev R E , Bykov V A , et al . Glass-forming ability, structure and magnetocaloric effect in Gd-Sc-Co-Ni-Al bulk metallic glasses [J]. Journal of Alloys and Compounds, 2021, 854: 157170
|
3 |
Zhang H , Sun Y , Niu E , et al . Enhanced mechanical properties and large magnetocaloric effects in bonded La(Fe, Si)13-based magnetic refrigeration materials [J]. Applied Physics Letters, 2014, 104(6): 062407
|
4 |
Hao J , Hu F , Wang J T , et al . Large enhancement of magnetocaloric and barocaloric effects by hydrostatic pressure in La(Fe0.92-Co0.08)11.9Si1.1 with a NaZn13-type structure [J]. Chemistry of Materials, 2020, 32(5): 1807
|
5 |
Zhang H , Hu F , Sun J , et al . Effects of interstitial H and/or C atoms on the magnetic and magnetocaloric properties of La(Fe, Si)13-based compounds [J]. Science China Physics, Mechanics and Astronomy, 2013, 56(12): 2302
|
6 |
Miao X , Wang W , Liang H , et al . Printing (Mn, Fe)2(P,Si) magnetocaloric alloys for magnetic refrigeration applications [J]. Journal of Materials Science, 2020, 55(15): 6660
|
7 |
Sun N K , Zhong D H , Ren Z X , et al . Room-temperature magnetocalor effect and magneto-resistance effect of Co0.525Fe0.475MnP compound [J]. Chin. J. Mater. Res., 2019, 33(2): 124
|
|
孙乃坤, 仲德晗, 任增鑫 等 . Co0.525Fe0.475MnP化合物的室温磁热效应和磁电阻效应 [J]. 材料研究学报, 2019, 33(2): 124
|
8 |
Wang B S , Tong P , Sun Y P , et al . Large magnetic entropy change near room temperature in antipervoskite SnCMn3 [J]. EPL (Europhysics Letters), 2009, 85(4): 47004
|
9 |
Yan J , Sun Y , Wu H , et al . Phase transitions and magnetocaloric effect in Mn3Cu0.89N0.96 [J]. Acta Materialia, 2014, 74: 58
|
10 |
Lin S , Wang B S , Hu X B , et al . The structural, magnetic, electrical/thermal transport properties and reversible magnetocaloric effect in Fe-based antipervoskite compound AlC1.1Fe3 [J]. Journal of Magnetism and Magnetic Materials, 2012, 324(20): 3267
|
11 |
Zhong X , Tang P , Gao B , et al . Magnetic properties and magnetocaloric effects in amorphous and crystalline Gd55Co35Ni10 ribbons [J]. Science China Physics, Mechanics and Astronomy, 2013, 56(6): 1096
|
12 |
Yu B F , Gao Q , Zhang B , et al . Review on research of room temperature magnetic refrigeration [J]. International Journal of Refrigeration, 2003, 26(6): 622
|
13 |
Li X , Xing Ru , Liu J , et al . Magnetocaloric Effect of Tb-doped Double Perovskite Oxide Pr2CoMnO6 [J]. Chin. J. Mater. Res,2020,34(1):73
|
|
李晓欣, 邢 茹, 刘 娇 等 . Tb掺杂双钙钛矿氧化物Pr2CoMnO6的磁热效应 [J]. 材料研究学报, 2020, 34(1): 73
|
14 |
Ohnishi T , Soejima K , Yamashita K , et al . Magnetocaloric properties of (MnFeRu)2(PSi) as magnetic refrigerants near room temperature [J]. Magnetochemistry, 2017, 3(1): 6
|
15 |
Born N O , Caron L , Seeler F , et al . Tuning nature and temperature of structural and magnetic phase transitions of Mn3Cu1- y MyN1- x C x (M=Ag, Ni) [J]. Journal of Alloys and Compounds, 2019, 793: 185
|
16 |
Tian H C , Zhong X C , Liu Z W , et al . Achieving table-like magnetocaloric effect and large refrigerant capacity around room temperature in Fe78- x Ce x Si4Nb5B12Cu1 (x=0-10) composite materials [J]. Materials Letters, 2015, 138: 64
|
17 |
Zhou L , Tang Y , Chen Y , et al . Table-like magnetocaloric effect and large refrigerant capacity of composite magnetic refrigerants based on LaFe11.6Si1.4H alloys [J]. Journal of Rare Earths, 2018, 36(6): 613
|
18 |
Yang C , Tong P , Lin J C , et al . Large magnetic entropy change associated with the weakly first-order paramagnetic to ferrimagnetic transition in antiperovskite manganese nitride CuNMn3 [J]. Journal of Applied Physics, 2014, 116(3): 033902
|
19 |
Yan J , Sun Y , Wen Y , et al . Relationship between spin ordering, entropy, and anomalous lattice variation in Mn3Sn(1-ε)SiεC(1- δ) compounds [J]. Inorg Chem, 2014, 53(4): 2317
|
20 |
Yu M H , Lewis L H , Moodenbaugh A R . Large magnetic entropy change in the metallic antiperovskite Mn3GaC [J]. Journal of Applied Physics, 2003, 93(12): 10128
|
21 |
Shao Q , Lv Q , Yang X , et al . Low-field magnetocaloric effect in antiperovskite Mn3Ga1- x Ge x C compounds [J]. Journal of Magnetism and Magnetic Materials, 2015, 396: 160
|
22 |
Wang B S , Tong P , Sun Y P , et al . Magnetism, magnetocaloric effect and positive magnetoresistance in Fe-doped antipervoskite compounds SnCMn3- x Fe x (x=0.05-0.20) [J]. Journal of Magnetism and Magnetic Materials, 2010, 322(1):163
|
23 |
Wang B S , Lu W J , Lin S , et al . Magnetic/structural diagram, chemical composition-dependent magnetocaloric effect in self-doped antipervoskite compounds Sn1- x CMn3+ x (0≤x≤0.40) [J]. Journal of Magnetism and Magnetic Materials, 2012, 324(5): 773
|
24 |
Yan J , Sun Y , Wang C , et al . Effects of Co doping on the magnetic properties, entropy change, and magnetocaloric effect in Mn3-Sn1- x Co x C1.1 compounds [J]. Acta Physica Sinica, 2014, 63(16): 167502
|
|
闫 君, 孙 莹, 王 聪 等 . Co掺杂对Mn3Sn1- x Co x C1.1化合物的磁性质、熵变以及磁卡效应的影响 [J]. 物理学报, 2014, 63(16): 167502
|
25 |
Born N O , Caron L , Seeler F , et al . Tunable giant magnetocaloric effect with very low hysteresis in Mn3CuN1- x C x [J]. Journal of Alloys and Compounds, 2018, 749: 926
|
26 |
Phan M H , Yu S C . Review of the magnetocaloric effect in manganite materials [J]. Journal of Magnetism and Magnetic Materials, 2007, 308(2): 325
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|