Please wait a minute...
Chinese Journal of Materials Research  2023, Vol. 37 Issue (10): 739-746    DOI: 10.11901/1005.3093.2023.087
ARTICLES Current Issue | Archive | Adv Search |
Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics
ZHOU Yi1(), TU Qiang2, MI Zhonghua3
1.School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
2.Shanghai Nuclear Engineering Research and Design Institute Co. Ltd., Shanghai 200233, China
3.Taiyuan Branch of CSIC Electrical Machinery Scienceand Technology Co. Ltd., Taiyuan 030027, China
Cite this article: 

ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics. Chinese Journal of Materials Research, 2023, 37(10): 739-746.

Download:  HTML  PDF(4244KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Gass-ceramics can be well used for making energy storage capacitors because of their unique structure of crystalline particles uniformly distributed in the glass matrix. Compared with conventional silicon glass-based glass-ceramics, phosphate glass-ceramics have significant advantage of less energy consumption. In this study, glass-ceramics of P2O5-Nb2O5-BaO-Na2O-CeO2 were prepared by melting and sintering respectively. The structure of the prepared phosphate glass-ceramics was characterized through XRD and SEM. The effect of preparation method on the structure and properties of the phosphate glass-ceramics were systematically studied in terms of the bulk density, microhardness, dielectric properties, polarization performance and energy storage etc. The results showed that the more compact glass-ceramics could be obtained by the melting method, which could improve the bulk density and micro-hardness of the glass-ceramics, the corresponding dielectric loss was reduced. In addition, when the addition of CeO2 was increased to 1% (mole fraction), the phosphate glass-ceramics obtained by the two methods were also achieved good densification. The addition of CeO2 played a role in promoting crystallization, which enhanced the dielectric constant and polarization performance. The released energy density of 13.5 mJ/cm3 and energy storage efficiency of 50.1% were obtained for the glass-ceramic with addition of 1% CeO2 (mole fraction) prepared by melting method.

Key words:  inorganic non-metallic materials      glass-ceramics      preparing method      mechanical properties      dielectric properties      P-E hysteresis loops      energy storage characteristics     
Received:  05 January 2023     
ZTFLH:  TQ110.1  
Fund: National Natural Science Foundation of China(51902221);University-enterprise Technology Tra-nsfer Project(C2022007)
Corresponding Authors:  ZHOU Yi, Tel: 18335130685, E-mail: zhouyi@tyust.edu.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2023.087     OR     https://www.cjmr.org/EN/Y2023/V37/I10/739

Fig.1  XRD plots of the phosphate glass-ceramics made by melting method (a) and sintering method (b)
Fig.2  SEM graphs of the phosphate glass-ceramics made by melting method with CeO2 addition of 0 (A), 0.5% (B), 1% (C), 1.5% (D), and by sintering method with CeO2 addition of 0 (a), 0.5% (b), 1% (c), 1.5% (d). % represents mole fraction
Fig.3  Bulk density, micro-Vickers hardness and Knoop hardness of the phosphate glass-ceramics made by melting method (a) and sintering method (b)
Fig.4  Frequency dependent curves of the dielectric constant and dielectric loss of the phosphate glass-ceramics made by melting method (a) and sintering method (b)
Fig.5  P-E hysteresis loops, discharged energy density, energy efficiency of the phosphate glass-ceramics made by melting method (A~C) and sintering method (a~c)
No.Glass-ceramic systemεrtan δE /kV·mm-1Ud /mJ·cm-3ηRef.
1PbO-SrO-Na2O-Nb2O5-SiO24270.02244.2850-[31]
2BaO-Na2O-Nb2O5-SiO23120.01616.337072[7]
3BaO-SrO-TiO2-Al2O3-SiO22820.01826.517842.3[32]
4BaTiO3-glass (BaO-Bi2O3-P2O5)17500.0881.52.342.3[25]
5BaO-Na2O-P2O5-Nb2O5-WO3380.021925.673.7[26]
6NaNbO3-glass (Na2O-Nb2O5- P2O5)4060.01668.484.8[33]
Table 1  Electric property of glass-ceramics
1 Cheng J S, Li H, Tang L Y, et al. Glass-Ceramics [M]. Beijing: Chemical Industry Press, 2006: 1
程金树, 李 宏, 汤李缨 等. 微晶玻璃 [M]. 北京: 化学工业出版社, 2006: 1
2 McMillan P W. Glass-Ceramics [M]. London: Academic Press, 1964: 3
3 Herczog A. Application of glass-ceramics for electronic components and circuits [J]. IEEE Trans. Parts Hybrids Packag., 1973, 9: 247
4 Gorzkowski E P, Pan M J, Bender B A, et al. Effect of additives on the crystallization kinetics of barium strontium titanate glass-ceramics [J]. J. Am. Ceram. Soc., 2008, 91: 1065
doi: 10.1111/jace.2008.91.issue-4
5 Huang S F, Li Y, Wei S H, et al. A novel high-strength lithium disilicate glass-ceramic featuring a highly intertwined microstructure [J]. J. Eur. Ceram. Soc., 2017, 37: 1083
doi: 10.1016/j.jeurceramsoc.2016.10.020
6 Zhou Y, Li Y M, Qiao Y, et al. Investigation of structure, dielectric and energy-storage properties of lead-free niobate glass and glass-ceramics [J]. J. Alloys Compd., 2018, 747: 55
doi: 10.1016/j.jallcom.2018.03.016
7 Zhou Y, Qiao Y, Tian Y M, et al. Improvement in structural, dielectric and energy-storage properties of lead-free niobate glass-ceramic with Sm2O3 [J]. J. Eur. Ceram. Soc., 2017, 37: 995
doi: 10.1016/j.jeurceramsoc.2016.10.022
8 Tian Y M, Zhou Y, Du J. Preparation and dielectric characterization of lead-free niobate glass-ceramic composites added with Lu2O3 [J]. J. Am. Ceram. Soc., 2014, 97: 2353
doi: 10.1111/jace.2014.97.issue-8
9 Zhao Y Y, Zhou Y, Yang J Y, et al. Optimized structural and mechanical properties of borophosphate glass [J]. Ceram. Int., 2020, 46: 9025
doi: 10.1016/j.ceramint.2019.12.150
10 Haily E, Bih L, Jerroudi M, et al. Structural and dielectric properties of K2O-TiO2-P2O5 glass and its associated glass-ceramic [J]. Mater. Today Proc., 2020, 30: 849
11 Sidorov A I, Fedorov Y K, Sivak A I, et al. Raman spectroscopic investigations on UV irradiated phosphate glasses with high content of silver or sodium [J]. Opt. Mater., 2020, 102: 109816
doi: 10.1016/j.optmat.2020.109816
12 Li K, Kou H M, Ning C Q. Sintering and mechanical properties of lithium disilicate glass-ceramics prepared by sol-gel method [J]. J. Non-Cryst. Solids, 2021, 552: 120443
doi: 10.1016/j.jnoncrysol.2020.120443
13 Zhou L H, Luo W Q, Wang Y S, et al. Preparation and structural transformation of PbF2·SiO2 based glass ceramics prepared by sol-gel method [J]. Chin. J Struct. Chem., 2004, 23: 1404
周丽花, 罗文钦, 王元生 等. PbF2·SiO2基玻璃陶瓷的溶胶-凝胶法制备及结构转变研究 [J]. 结构化学, 2004, 23: 1404
14 Liu S H, Li Q J, Shen J. Development of preparing bioglass ceramic coatings by sol-gel [J]. Glass Enam., 2004, 32: 43
刘守华, 李启甲, 沈 健. 溶胶-凝胶法制备生物玻璃陶瓷涂层的发展 [J]. 玻璃与搪瓷, 2004, 32: 43
15 Sun M Z. Fundamentals of Dielectric Physics [M]. Guangzhou: South China University of Technology Press, 2000: 33
孙目珍. 电介质物理基础 [M]. 广州: 华南理工大学出版社, 2000: 33
16 Thakur A, Chevalier A, Mattei J L, et al. Low-loss spinel nanoferrite with matching permeability and permittivity in the ultrahigh frequency range [J]. J. Appl. Phys., 2010, 108: 014301
17 Mathur P, Thakur A, Singh M. Comparative study of dielectric behavior of Mn0.4Zn0.6Fe2O4 nanoferrite by citrate precursor method [J]. Int. J. Mod. Phys., 2008, 22B: 2537
18 Du B X, Zhu L W. Electrical tree characteristics of XLPE under repetitive pulse voltage in low temperature [J]. IEEE Trans. Dielect. Electr. Insul., 2015, 22: 1801
doi: 10.1109/TDEI.2015.005183
19 Zhou Y, Zhang Q M, Luo J, et al. Structural and dielectric characterization of Gd2O3-added BaO-Na2O-Nb2O5-SiO2 glass-ceramic composites [J]. Scr. Mater., 2011, 65: 296
doi: 10.1016/j.scriptamat.2011.04.027
20 Zhang Q M, Wang L, Luo J, et al. Improved energy storage density in barium strontium titanate by addition of BaO-SiO2-B2O3 glass [J]. J. Am. Ceram. Soc., 2009, 92: 1871
doi: 10.1111/jace.2009.92.issue-8
21 Tunkasiri T, Rujijanagul G. Dielectric strength of fine grained barium titanate ceramics [J]. J. Mater. Sci. Lett., 1996, 15: 1767
doi: 10.1007/BF00275336
22 Wang H, Zhao H F, Kang J S, et al. Properties of ZnO varistor ceramics Co-doped with B2O3 and Al2O3 [J]. Chin. J. Mater. Res., 2021, 35: 110
王 昊, 赵洪峰, 康加爽 等. B2O3和Al2O3共同掺杂ZnO压敏陶瓷的性能 [J]. 材料研究学报, 2021, 35: 110
23 Hu G L, Zhu J F, Yang H B, et al. Effect of Cr2O3 addition on the microstructure and electrical properties of SnO2-based varistor [J]. J. Mater. Sci. Mater. Electron., 2013, 24: 1735
doi: 10.1007/s10854-012-1007-z
24 Park J H, Kim B K, Park J G, et al. Dielectric hysteresis measurement in lossy ferroelectrics [J]. Ferroelectrics, 1999, 230: 151
doi: 10.1080/00150199908214911
25 Haily E, Bih L, El Bouari A, et al. Effect of BaO-Bi2O3-P2O5 glass additive on structural, dielectric and energy storage properties of BaTiO3 ceramics [J]. Mater. Chem. Phys., 2020, 241: 122434
doi: 10.1016/j.matchemphys.2019.122434
26 Ihyadn A, Lahmar A, Mezzane D, et al. Structural, elelectrical and energy storage properties of BaO-Na2O-Nb2O5-WO3-P2O5 glass-ceramics system [J]. Mater. Res. Express, 2019, 6: 115203
doi: 10.1088/2053-1591/ab4569
27 Jiang J Y, Shen Z H, Qian J F, et al. Ultrahigh discharge efficiency in multilayered polymer nanocomposites of high energy density [J]. Energy Storage Mater., 2019, 18: 213
28 Mackey M, Schuele D E, Zhu L, et al. Reduction of dielectric hysteresis in multilayered films via nanoconfinement [J]. Macromolecules, 2012, 45: 1954
doi: 10.1021/ma202267r
29 Wu L W, Wang X H, Li L T. Lead-free BaTiO3-Bi(Zn2/3Nb1/3)O3 weakly coupled relaxor ferroelectric materials for energy storage [J]. RSC Adv., 2016, 6: 14273
doi: 10.1039/C5RA21261H
30 Zhao L, Gao J, Liu Q, et al. Silver niobate lead-free antiferroelectric ceramics: enhancing energy storage density by B-site doping [J]. ACS Appl. Mater. Interfaces, 2018, 10: 819
doi: 10.1021/acsami.7b17382
31 Han D F, Zhang Q M, Luo J, et al. Optimization of energy storage density in ANb2O6-NaNbO3-SiO2 (A=[(1-x)Pb, xSr]) nanostructured glass-ceramic dielectrics [J]. Ceram. Int., 2012, 38: 6903
doi: 10.1016/j.ceramint.2012.04.087
32 Zhang Y, Huang J J, Ma T, et al. Sintering temperature dependence of energy-storage properties in (Ba, Sr)TiO3 glass-ceramics [J]. J. Am. Ceram. Soc., 2011, 94: 1805
doi: 10.1111/jace.2011.94.issue-6
33 Benyounoussy S, Bih L, Muñoz F, et al. Effect of the Na2O-Nb2O5-P2O5 glass additive on the structure, dielectric and energy storage performances of sodium niobate ceramics [J]. Heliyon, 2021, 7: e07113
doi: 10.1016/j.heliyon.2021.e07113
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[4] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[5] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[6] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[7] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[8] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[9] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[10] JIANG Shuimiao, MING Kaisheng, ZHENG Shijian. A Review on Grain Boundary Segregation, Interfacial Phase and Mechanical Property Adjusting-controlling for Nanocrystalline Materials[J]. 材料研究学报, 2023, 37(5): 321-331.
[11] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[12] CHEN Zhipeng, ZHU Zhihao, SONG Mengfan, ZHANG Shuang, LIU Tianyu, DONG Chuang. An Ultra-high-strength Ti-Al-V-Mo-Nb-Zr Alloy Designed from Ti-6Al-4V Cluster Formula[J]. 材料研究学报, 2023, 37(4): 308-314.
[13] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[14] ZHAO Yunmei, ZHAO Hongze, WU Jie, TIAN Xiaosheng, XU Lei. Effect of Heat Treatment on Microstructure and Properties of TIG Welded Joints of Powder Metallurgy Inconel 718 Alloy[J]. 材料研究学报, 2023, 37(3): 184-192.
[15] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
No Suggested Reading articles found!