Please wait a minute...
Chinese Journal of Materials Research  2022, Vol. 36 Issue (8): 635-640    DOI: 10.11901/1005.3093.2021.454
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property
ZHU Xiaodong1, XIA Yangwen1, YU Qiang2, Yang Daixiong1, HE Lili1, FENG Wei1()
1.School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
2.Sichuan Xinya Non-Destructive Testing Co. Ltd, Chengdu 610213, China
Cite this article: 

ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property. Chinese Journal of Materials Research, 2022, 36(8): 635-640.

Download:  HTML  PDF(9454KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cu-doped rutile TiO2 photocatalysts with different concentrations were prepared by sol-gel method at 650℃. The crystal structure, surface morphology, elemental composition and valence state, surface area and optical property of the obtained photocatalysts were characterized by XRD, SEM, TEM, XPS, BET, PL and DRS. The results show that pure TiO2 is a mixed crystal composed of a small amount of anatase and a large amount of rutile. Cu doping is conducive to the transformation of anatase to rutile, and Cu-doped TiO2 forms single rutile phase. Cu element exists in the form of +1 and +2 valence coexistence in the sample. Using rhodamine B as the target pollutant and xenon lamp as the UV-visible light source, the photocatalytic activity was investigated. The results show that Cu doping inhibits the photocatalytic activity. The results of optical property show that although Cu doping is beneficial to suppressing the recombination of photogenerated electrons and holes, it reduces the absorption of the photocatalyst in the ultraviolet religion, which leads to the decline of photocatalytic activity.

Key words:  inorganic non-metallic materials      rutile TiO2      Cu doping      photocatalytic activity      sol-gel method     
Received:  13 August 2021     
ZTFLH:  O614.41  
Fund: Applied Basic Research Programs of Sichuan Province(2019YJ0664);Training Program for Innovation of Chengdu University(S202111079008);Training Program for Innovation of Chengdu University(S202111079118)
About author:  FENG Wei, Tel: 13541291085, E-mail: fengwei233@126.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2021.454     OR     https://www.cjmr.org/EN/Y2022/V36/I8/635

Fig.1  XRD patterns of pure TiO2 and Cu-TiO2
Fig.2  SEM images of pureTiO2 (a) and 3%Cu-TiO2 (b)
Fig.3  TEM images of pureTiO2 (a, b) and 3%Cu-TiO2 (c, d)
Fig.4  XPS spectra of 3%Cu-TiO2
Fig.5  Nitrogen adsorption-desorption isotherms of pure TiO2 (a) and 3%Cu-TiO2 (b)
Fig.6  Photocatalytic degradation curves (a) and kinetics curves (b) for pure TiO2 and Cu-TiO2
Fig.7  PL spectra of pure TiO2 and Cu-TiO2
Fig.8  UV-visible absorption spectra of pure TiO2 and Cu-TiO2
1 Chen Y, Xiang Z Y, Wang D S, et al. Effective photocatalytic degradation and physical adsorption of methylene blue using cellulose/GO/TiO2 hydrogels [J]. RSC Adv., 2020, 10: 23936
doi: 10.1039/D0RA04509H
2 Bashiri R, Mohamed N M, Kait C F, et al. Enhancing photoelectrochemical hydrogen production over Cu and Ni doped titania thin film: Effect of calcination duration [J]. J. Environ. Chem. Eng., 2017, 5(4): 3207
doi: 10.1016/j.jece.2017.06.027
3 Adyani S M, Ghorbani M. A comparative study of physicochemical and photocatalytic properties of visible light responsive Fe, Gd and P single and tri-doped TiO2 nanomaterials [J]. J. Rare Earth., 2018, 36: 72
doi: 10.1016/j.jre.2017.06.012
4 Li X B, Xiong J, Huang J T, et al. Novel g-C3N4/h'ZnTiO3-a'TiO2 direct Z-scheme heterojunction with significantly enhanced visible-light photocatalytic activity [J]. J. Alloy. Compd., 2019, 774: 768
doi: 10.1016/j.jallcom.2018.10.034
5 Zhang Y, Wang T, Zhou M, et al. Hydrothermal preparation of Ag-TiO2 nanostructures with exposed {001}/{101} facets for enhancing visible light photocatalytic activity [J]. Ceram. Int., 2017, 44(3): 3118
6 Li S S, Liu Y, Wang Y H, et al. Preparation and photocatalytic activity of Co-doped TiO2 [J]. New Chem. Mater., 2016, 44(9): 159
李沙沙, 刘 勇, 王艳红 等. 钴掺杂改性TiO2的制备及其光催化性能研究 [J]. 化工新型材料, 2016, 44(9): 159
7 Li W. Treatment of trivalent chromium in electroplating wastewater by Fe (II)-doped TiO2 photocatalyst [J]. Electroplating & Finishing, 2021, 40(2): 124
李 伟. Fe(II)掺杂TiO2光催化剂处理电镀废水中的六价铬 [J]. 电镀与涂饰, 2021, 40(2): 124
8 Triantis T M, Fotiou T, Kaloudis T, et al. Photocatalytic degradation and mineralization of microcystin-LR under UV-A, solar and visible light using nanostructured nitrogen doped TiO2 [J]. J. Hazard. Mater., 2012, 211-212(2): 196
doi: 10.1016/j.jhazmat.2011.11.042
9 Carp O, Huisman C.L, Reller A. Photoinduced reactivity of titanium dioxide [J]. Prog. Solid. State. Chem., 2004, 32: 33
doi: 10.1016/j.progsolidstchem.2004.08.001
10 Meng Q Y, Liu B C, Liu H J, et al. Effects of S and Ta codoping on photocatalytic activity of rutile TiO2 [J]. J. Sol-Gel. Sci. Techn., 2018, 86: 631
doi: 10.1007/s10971-018-4681-3
11 Zhao W J, Zhang J, Pan J Q, et al. One-step electrospinning route of SrTiO3-modified Rutile TiO2nanofibers and its photocatalytic properties [J]. Nanoscale Res. Lett., 2017, 12(1): 371
doi: 10.1186/s11671-017-2130-9
12 Zhu X D, Han S H, Zhu D Z, et al. Preparation and characterisation of Ag modified rutile titanium dioxide and its photocatalytic activity under simulated solar light [J]. Micro Nano Lett., 2019, 14(7): 757
doi: 10.1049/mnl.2018.5679
13 Bensouici F, Bououdina M, Dakhel A.A, et al. Optical, structural and photocatalysis properties of Cu-doped TiO2 thin films [J]. Appl. Surf. Sci., 2017, 395: 110
doi: 10.1016/j.apsusc.2016.07.034
14 Evgenidou E, Chatzisalata Z, Tsevis A, et al. Photocatalytic degradation of a mixture of eight antibiotics using Cu-modified TiO2 photocatalysts: Kinetics, mineralization, antimicrobial activity elimination and disinfection [J]. J. Environ. Chem. Eng., 2021, 9: 105295
doi: 10.1016/j.jece.2021.105295
15 Luo Y J, Xu Y X, Liu X P, et al. Design of Cu-Ce co-doped TiO2 for improved photocatalysis [J]. J. Mater. Sci., 2017, 52(3): 1265
doi: 10.1007/s10853-016-0421-7
16 Turkten N, Cinar Z, Tomruk A, et al. Copper-doped TiO2 photocatalysts: application to drinking water by humic matter degradation [J]. Environ. Sci. Pollut. Res., 2019, 26(36): 36096
doi: 10.1007/s11356-019-04474-x
17 Zhu X D, Wang J, Ma Y, et al. Influence of heat treatment on photocatalytic activity of Ag-ZnO heterostructure [J]. Chin. J. Mater. Res., 2020, 34(10): 770
朱晓东, 王 娟, 马 洋 等. 热处理对Ag-ZnO异质结构光催化性能的影响 [J]. 材料研究学报, 2020, 34(10): 770
doi: 10.11901/1005.3093.2020.132
18 Liu H Y, Fan H M, Wu R, et al. Nitrogen-doped black TiO2 spheres with enhanced visible light photocatalytic performance [J]. SN Appl. Sci., 2019, 1: 487
doi: 10.1007/s42452-019-0502-8
19 Dao D V, Bremt M V D, Koeller Z, et al. Effect of metal ion doping on the optical properties and the deactivation of photocatalytic activity of ZnO nanopowder for application in sunscreens [J]. Powder Technol., 2016, 288: 366
doi: 10.1016/j.powtec.2015.11.030
20 Sood S, Umar A, Mehta S K, et al. Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds [J]. J. Colloid Interface Sci., 2015, 450: 213
doi: 10.1016/j.jcis.2015.03.018
21 Lin X X, Rong F, Fu D G, et al. Enhanced photocatalytic activity of fluorine doped TiO2 by loaded with Ag for degradation of organic pollutants [J]. Powder Technol., 2012, 219: 173
doi: 10.1016/j.powtec.2011.12.037
22 Krishnakumar V, Boobas S, Jayaprakash J, et al. Effect of Cu doping on TiO2 nanoparticles and its photocatalytic activity under visible light [J]. J. Mater. Sci., 2016, 27: 7438
23 Gracia F, Holgado J. P, Caballero A, et al. Structural, optical, and photoelectrochemical properties of Mn+-TiO2 model thin film photocatalysts [J]. J. Phys. Chem. B, 2004, 108: 17466
doi: 10.1021/jp0484938
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[14] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
[15] WANG Yihao, WU Qiong, LI Pengfei, YANG Zhanxin, ZHANG Hongtao. Preparation and Supercapacitor Performance of Few-Layered Ti3C2 with High Specific Capacitance[J]. 材料研究学报, 2022, 36(3): 183-190.
No Suggested Reading articles found!