|
|
Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property |
ZHU Xiaodong1, XIA Yangwen1, YU Qiang2, Yang Daixiong1, HE Lili1, FENG Wei1( ) |
1.School of Mechanical Engineering, Chengdu University, Chengdu 610106, China 2.Sichuan Xinya Non-Destructive Testing Co. Ltd, Chengdu 610213, China |
|
Cite this article:
ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property. Chinese Journal of Materials Research, 2022, 36(8): 635-640.
|
Abstract Cu-doped rutile TiO2 photocatalysts with different concentrations were prepared by sol-gel method at 650℃. The crystal structure, surface morphology, elemental composition and valence state, surface area and optical property of the obtained photocatalysts were characterized by XRD, SEM, TEM, XPS, BET, PL and DRS. The results show that pure TiO2 is a mixed crystal composed of a small amount of anatase and a large amount of rutile. Cu doping is conducive to the transformation of anatase to rutile, and Cu-doped TiO2 forms single rutile phase. Cu element exists in the form of +1 and +2 valence coexistence in the sample. Using rhodamine B as the target pollutant and xenon lamp as the UV-visible light source, the photocatalytic activity was investigated. The results show that Cu doping inhibits the photocatalytic activity. The results of optical property show that although Cu doping is beneficial to suppressing the recombination of photogenerated electrons and holes, it reduces the absorption of the photocatalyst in the ultraviolet religion, which leads to the decline of photocatalytic activity.
|
Received: 13 August 2021
|
|
Fund: Applied Basic Research Programs of Sichuan Province(2019YJ0664);Training Program for Innovation of Chengdu University(S202111079008);Training Program for Innovation of Chengdu University(S202111079118) |
About author: FENG Wei, Tel: 13541291085, E-mail: fengwei233@126.com
|
1 |
Chen Y, Xiang Z Y, Wang D S, et al. Effective photocatalytic degradation and physical adsorption of methylene blue using cellulose/GO/TiO2 hydrogels [J]. RSC Adv., 2020, 10: 23936
doi: 10.1039/D0RA04509H
|
2 |
Bashiri R, Mohamed N M, Kait C F, et al. Enhancing photoelectrochemical hydrogen production over Cu and Ni doped titania thin film: Effect of calcination duration [J]. J. Environ. Chem. Eng., 2017, 5(4): 3207
doi: 10.1016/j.jece.2017.06.027
|
3 |
Adyani S M, Ghorbani M. A comparative study of physicochemical and photocatalytic properties of visible light responsive Fe, Gd and P single and tri-doped TiO2 nanomaterials [J]. J. Rare Earth., 2018, 36: 72
doi: 10.1016/j.jre.2017.06.012
|
4 |
Li X B, Xiong J, Huang J T, et al. Novel g-C3N4/h'ZnTiO3-a'TiO2 direct Z-scheme heterojunction with significantly enhanced visible-light photocatalytic activity [J]. J. Alloy. Compd., 2019, 774: 768
doi: 10.1016/j.jallcom.2018.10.034
|
5 |
Zhang Y, Wang T, Zhou M, et al. Hydrothermal preparation of Ag-TiO2 nanostructures with exposed {001}/{101} facets for enhancing visible light photocatalytic activity [J]. Ceram. Int., 2017, 44(3): 3118
|
6 |
Li S S, Liu Y, Wang Y H, et al. Preparation and photocatalytic activity of Co-doped TiO2 [J]. New Chem. Mater., 2016, 44(9): 159
|
|
李沙沙, 刘 勇, 王艳红 等. 钴掺杂改性TiO2的制备及其光催化性能研究 [J]. 化工新型材料, 2016, 44(9): 159
|
7 |
Li W. Treatment of trivalent chromium in electroplating wastewater by Fe (II)-doped TiO2 photocatalyst [J]. Electroplating & Finishing, 2021, 40(2): 124
|
|
李 伟. Fe(II)掺杂TiO2光催化剂处理电镀废水中的六价铬 [J]. 电镀与涂饰, 2021, 40(2): 124
|
8 |
Triantis T M, Fotiou T, Kaloudis T, et al. Photocatalytic degradation and mineralization of microcystin-LR under UV-A, solar and visible light using nanostructured nitrogen doped TiO2 [J]. J. Hazard. Mater., 2012, 211-212(2): 196
doi: 10.1016/j.jhazmat.2011.11.042
|
9 |
Carp O, Huisman C.L, Reller A. Photoinduced reactivity of titanium dioxide [J]. Prog. Solid. State. Chem., 2004, 32: 33
doi: 10.1016/j.progsolidstchem.2004.08.001
|
10 |
Meng Q Y, Liu B C, Liu H J, et al. Effects of S and Ta codoping on photocatalytic activity of rutile TiO2 [J]. J. Sol-Gel. Sci. Techn., 2018, 86: 631
doi: 10.1007/s10971-018-4681-3
|
11 |
Zhao W J, Zhang J, Pan J Q, et al. One-step electrospinning route of SrTiO3-modified Rutile TiO2nanofibers and its photocatalytic properties [J]. Nanoscale Res. Lett., 2017, 12(1): 371
doi: 10.1186/s11671-017-2130-9
|
12 |
Zhu X D, Han S H, Zhu D Z, et al. Preparation and characterisation of Ag modified rutile titanium dioxide and its photocatalytic activity under simulated solar light [J]. Micro Nano Lett., 2019, 14(7): 757
doi: 10.1049/mnl.2018.5679
|
13 |
Bensouici F, Bououdina M, Dakhel A.A, et al. Optical, structural and photocatalysis properties of Cu-doped TiO2 thin films [J]. Appl. Surf. Sci., 2017, 395: 110
doi: 10.1016/j.apsusc.2016.07.034
|
14 |
Evgenidou E, Chatzisalata Z, Tsevis A, et al. Photocatalytic degradation of a mixture of eight antibiotics using Cu-modified TiO2 photocatalysts: Kinetics, mineralization, antimicrobial activity elimination and disinfection [J]. J. Environ. Chem. Eng., 2021, 9: 105295
doi: 10.1016/j.jece.2021.105295
|
15 |
Luo Y J, Xu Y X, Liu X P, et al. Design of Cu-Ce co-doped TiO2 for improved photocatalysis [J]. J. Mater. Sci., 2017, 52(3): 1265
doi: 10.1007/s10853-016-0421-7
|
16 |
Turkten N, Cinar Z, Tomruk A, et al. Copper-doped TiO2 photocatalysts: application to drinking water by humic matter degradation [J]. Environ. Sci. Pollut. Res., 2019, 26(36): 36096
doi: 10.1007/s11356-019-04474-x
|
17 |
Zhu X D, Wang J, Ma Y, et al. Influence of heat treatment on photocatalytic activity of Ag-ZnO heterostructure [J]. Chin. J. Mater. Res., 2020, 34(10): 770
|
|
朱晓东, 王 娟, 马 洋 等. 热处理对Ag-ZnO异质结构光催化性能的影响 [J]. 材料研究学报, 2020, 34(10): 770
doi: 10.11901/1005.3093.2020.132
|
18 |
Liu H Y, Fan H M, Wu R, et al. Nitrogen-doped black TiO2 spheres with enhanced visible light photocatalytic performance [J]. SN Appl. Sci., 2019, 1: 487
doi: 10.1007/s42452-019-0502-8
|
19 |
Dao D V, Bremt M V D, Koeller Z, et al. Effect of metal ion doping on the optical properties and the deactivation of photocatalytic activity of ZnO nanopowder for application in sunscreens [J]. Powder Technol., 2016, 288: 366
doi: 10.1016/j.powtec.2015.11.030
|
20 |
Sood S, Umar A, Mehta S K, et al. Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds [J]. J. Colloid Interface Sci., 2015, 450: 213
doi: 10.1016/j.jcis.2015.03.018
|
21 |
Lin X X, Rong F, Fu D G, et al. Enhanced photocatalytic activity of fluorine doped TiO2 by loaded with Ag for degradation of organic pollutants [J]. Powder Technol., 2012, 219: 173
doi: 10.1016/j.powtec.2011.12.037
|
22 |
Krishnakumar V, Boobas S, Jayaprakash J, et al. Effect of Cu doping on TiO2 nanoparticles and its photocatalytic activity under visible light [J]. J. Mater. Sci., 2016, 27: 7438
|
23 |
Gracia F, Holgado J. P, Caballero A, et al. Structural, optical, and photoelectrochemical properties of Mn+-TiO2 model thin film photocatalysts [J]. J. Phys. Chem. B, 2004, 108: 17466
doi: 10.1021/jp0484938
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|