Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (1): 1-6    DOI: 10.11901/1005.3093.2020.185
ARTICLES Current Issue | Archive | Adv Search |
Preparation of Graphene/Ni-Cu Alloy Composite on Ni-Cu Alloy Template Made by Selective Laser Melting
LIU Zhufeng1, HUANG Yaodong1, YANG Xiao1, HE Yuanjing2, LI Zhaoqing1(), YAN Chunze1,3
1.State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2.The Open University of China Ministry of Information Technology (Engineering Center), Beijing 100039, China
3.Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China
Cite this article: 

LIU Zhufeng, HUANG Yaodong, YANG Xiao, HE Yuanjing, LI Zhaoqing, YAN Chunze. Preparation of Graphene/Ni-Cu Alloy Composite on Ni-Cu Alloy Template Made by Selective Laser Melting. Chinese Journal of Materials Research, 2021, 35(1): 1-6.

Download:  HTML  PDF(2026KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Ni-Cu alloy was prepared by selective laser melting (SLM) additive manufacturing technology, and then was used as substrate material for preparation of graphene/Ni-Cr composite by chemical vapor deposition (CVD). The optimized SLM forming parameters are: 200 W laser power, scanning speed 800 mm/s, single layer thickness 0.05 mm, and scanning pitch 0.06. mm. The as prepared Ni-Cu alloy has a density of up to 98.65% and a Rockwell hardness of 127.4 HV1. Then the CVD deposition process of graphene on the Ni-Cu alloy as substrate material was investigated. Results show that graphene can generate on the surface of Ni-Cu alloy at the reaction temperature range of 900~1100℃ and graphene/Ni-Cu alloy composite material was obtained. The thickness of the generated graphene layer gradually decreased with the increase of the reaction temperature. The thermal conductivity of the prepared graphene/Ni-Cu alloy composite material was characterized. The top graphene layer can increase the thermal diffusion coefficient of the Ni-Cu alloy material by 12.5%, which presents a good application prospect for the composite in fields such as radiator, thermal conductive materials and so on.

Key words:  composite      selective laser melting      Ni-Cu alloy      graphene      Chemical Vapor Deposition      thermal conductivity     
Received:  25 May 2020     
ZTFLH:  TB331  
Fund: National Natural Science Foundation of China(51671091);Science,Technology and Innovation Commission of Shenzhen Municipality(JCYJ20180213102634650)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.185     OR     https://www.cjmr.org/EN/Y2021/V35/I1/1

Fig.1  Schematic diagram of preparation process of Ni-Cu alloy/graphene composite
Fig.2  SEM micrographs and particle size distribution of metal powders (a) (d) Cu, (b) (e) Ni, (a) (d) Ni-Cu
Fig.3  X-ray diffraction patterns (a) and SEM micrograph (b) of SLM forming materials
Fig.4  Elemental distribution of the SLM forming materials. (a) elemental distribution, (b) CuK, (c) NiK
%(mass fraction)%(mole fraction)
NiK62.3464.17
CuK37.6635.83
Table 1  Element contents of the SLM forming materials
Fig.5  Raman spectra and IG/I2D and 2Dw (b) of graphene growth as a function of temperature
Fig.6  Thermal conductivity of Ni-Cu alloy/graphene composite
Fig.7  Analysis of Thermal Conductivity of Ni-Cu alloy/graphene composite
1 Kruth J. P., Froyen L., Vaerenbergh J. V., et al. Selective laser melting of iron-based powder [J]. Mater. Process. Technol., 2004,149: 616
2 Losurdo M., Giangregorio M. M., Capezzuto P., et al. Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure [J]. PCCP, 2011, 13: 20836
3 Muñoz R., Gómez-Aleixandre C., Review of CVD synthesis of graphene [J]. Chem. Vap. Deposition, 2013, 19: 297
4 Stefan T., Alfonso R., Paul H., et al. Engineering polycrystalline Ni films to improve thickness uniformity of the chemical-vapor-deposition-grown graphene films [J]. Nanotechnology, 2010, 21: 015601
5 Robinson Z. R., Tyagi P., Murray T. M., et al. Substrate grain size and orientation of Cu and Cu-Ni foils used for the growth of graphene films [J]. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films, 2011, 30: 011401-011401-011407
6 Hsieh Y. P., Wang Y. W., Ting C. C., et al. Effect of catalyst morphology on the quality of CVD grown graphene [J]. Journal of Nanomaterials, 2013 (2013) 6
7 Hodge N.E., Ferencz R.M., Solberg J.M., Implementation of a thermomechanical model for the simulation of selective laser melting [J]. Comput. Mech., 2014, 54: 33
8 Yan C., Hao L., Hussein A., et al. Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting [J]. Mater. Design, 2014, 55: 533
9 Wang X., Dong L., Zhang B., et al. Controlled growth of Cu–Ni nanowires and nanospheres for enhanced microwave absorption properties [J]. Nanotechnology, 2016, 27: 125602
10 Bai Z., Chen X., Yang K., et al. Hydrogenation of dicyclopentadiene resin and its monomer over high efficient CuNi alloy catalysts [J]. ChemistrySelect, 2019, 4: 6035
11 Yan C., Liang H., Hussein A., et al. Microstructure and mechanical properties of aluminium alloy cellular lattice structures manufactured by direct metal laser sintering [J]. Materials Science & Engineering A, 2015, 628: 238
12 Yan C., Liang H., Raymont D.. Evaluations of cellular lattice structures manufactured using selective laser melting [J]. International Journal of Machine Tools & Manufacture, 2012, 62: 32
13 Habib M. R., Liang T., Yu X., et al. A review of theoretical study of graphene chemical vapor deposition synthesis on metals: nucleation, growth, and the role of hydrogen and oxygen [J]. Rep. Prog. Phys., 2018, 81: 036501
14 Cunha T. H. R., Ek-Weis J., Lacerda R. G., et al. Graphene chemical vapor deposition at very low pressure: The impact of substrate surface self-diffusion in domain shape [J]. Appl. Phys. Lett., 2014, 105: 1312
15 A. K. Geim, Graphene: status and prospects [J]. Science, 2009, 324: 1530
16 Park B. J., Choi J. S., Eom J. H., et al. Defect-free graphene synthesized directly at 150℃ via chemical vapor deposition with no transfer [J]. ACS Nano, 2018, 12: 2008
17 Nan L., Lei F., Boya D., et al. Universal segregation growth approach to wafer-size graphene from non-noble metals [J]. Nano Lett., 2011, 11: 297
18 Shu H., Tao X. M., Ding F.. What are the active carbon species during graphene chemical vapor deposition growth? [J]. Nanoscale, 2015, 7: 1627
19 Ferrari A. C., Meyer J. C., Scardaci V., et al. Raman spectrum of graphene and graphene layers [J]. Phys. Rev. Lett., 2006, 97: 187401
20 Fang W., Hsu A. L., Song Y., et al. A review of large-area bilayer graphene synthesis by chemical vapor deposition [J]. Nanoscale, 2015, 7: 20335
21 Balandin A. A., Ghosh S., Bao W., et al. Superior thermal conductivity of single-layer graphene [J]. Nano Lett., 2008, 8: 902
22 Cabrera H., Mendoza D., Benítez J. L., et al. Thermal diffusivity of few-layers graphene measured by an all-optical method [J]. Journal of Physics D Applied Physics, 2015, 48: 465501
23 Karcher H.. The triply periodic minimal surfaces of Alan Schoen and their constant mean curvature companions [J]. Manuscripta Mathematica, 1989, 64(3): 291
24 Yang Z., Yan C., Liu J., et al. Designing 3D graphene networks via a 3D-printed Ni template [J]. RSC Adv., 2015, 5(37): 29397
25 Balandin A. A.. Thermal properties of graphene and nanostructured carbon materials [J]. Nat. Mater., 2011, 10(8): 569
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] LIU Tao, YIN Zhiqiang, LEI Jingfa, GE Yongsheng, SUN Hong. Plastic Deformation Behavior of Selective Laser Melting 316L Stainless Steel under High Strain Rate Compression[J]. 材料研究学报, 2023, 37(5): 391-400.
[8] JIANG Menglei, DAI Binbin, CHEN Liang, LIU Hui, MIN Shiling, YANG Fan, HOU Juan. Effect of Building Dimensions by Selective Laser Melting on Pitting Properties of 304L Stainless Steel[J]. 材料研究学报, 2023, 37(5): 353-361.
[9] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[10] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[11] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[12] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[13] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[14] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[15] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
No Suggested Reading articles found!