Please wait a minute...
Chinese Journal of Materials Research  2021, Vol. 35 Issue (7): 526-534    DOI: 10.11901/1005.3093.2020.550
ARTICLES Current Issue | Archive | Adv Search |
Assessment on Corrosion Behavior of Q235 Steel in a Simulated Concrete Pore Liquid Containing Chloride by Electrochemical Noise
TANG Rongmao, LIU Guangming(), LIU Yongqiang, SHI Chao, ZHANG Bangyan, TIAN Jihong, GAN Hongyu
School of Material Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
Cite this article: 

TANG Rongmao, LIU Guangming, LIU Yongqiang, SHI Chao, ZHANG Bangyan, TIAN Jihong, GAN Hongyu. Assessment on Corrosion Behavior of Q235 Steel in a Simulated Concrete Pore Liquid Containing Chloride by Electrochemical Noise. Chinese Journal of Materials Research, 2021, 35(7): 526-534.

Download:  HTML  PDF(6343KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion process of Q235 steel in 0.5 mol/L NaCl saturated Ca(OH)2 solution (SCP) was investigated by electrochemical noise technology (EN) and electrochemical impedance spectroscopy (EIS), and the noise data were analyzed in time domain analysis and frequency domain analysis, and the impedance spectrum data were analyzed by way of equivalent circuit. The surface morphology and structure of the tested Q235 steel were characterized by SEM combined with EDS and XRD. The results show that the corrosion process of Q235 steel in SCP solution can be differentiated into three stages: (Ⅰ) the formation and cracking stage of passivation film, (Ⅱ) the metastable pitting corrosion stage and (Ⅲ) the Ca2+ deposition and corrosion product formation stage. In the stage (I), the amplitude of current noise fluctuation, the current noise standard deviation SI and the white noise level WI are relatively small, but the noise resistance Rn is relatively large; In the stage (Ⅱ), the amplitude of current noise fluctuation is large, SI and WI show a step-wise increase, and Rn decreases significantly; In the stage (Ⅲ), the amplitude of current noise fluctuation increases to 200nA, and SI, WI, Rn fluctuate relatively smoothly. When Q235 steel is corroded in SCP solution for 10 days, Fe2O3 with dispersed CaCO3 crystallites can be observed on the surface of Q235 steel. At this time Warburg impedance appears, while the corrosion reaction is jointly controlled by the charge transfer and O2 diffusion process.

Key words:  material failure and protection      Corrosion behavior research      Electrochemical noise      Simulated concrete pore liquid      Q235 steel     
Received:  22 December 2020     
ZTFLH:  TG172.6+3  
Fund: National Natural Science Foundation of China(51961028)
About author:  LIU Guangming, Tel: 13207006808; E-mail: gemliu@126.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2020.550     OR     https://www.cjmr.org/EN/Y2021/V35/I7/526

Fig.1  Time-domain spectrograms of de-DC drift of Q235 steel corroded in SCP solution for different times (a) 1 d; (b) 3 d; (c) 7 d; (b) 10 d
Fig.2  Time-domain statistics of Q235 steel corrosion in SCP solution for different times (a) Current noise standard deviation SI; (b) Noise resistance Rn
Fig.3  PSD of Q235 steel corroded in SCP solution for different time (a) 1 d; (b) 4 d; (c) 7 d; (b) 10 d
Fig.4  WI value change of Q235 steel corrosion in SCP solution for different time
Fig.5  Electrochemical impedance spectroscopy of Q235 steel corrosion in SCP solution for different time (a) Nyquist; (b) Bode
Fig.6  Equivalent circuit of Q235 steel corroded in SCP solution for different time (a) R(Q(R(QR))); (b) R(Q(R(Q(RW))))
Time/dRs/Ω·cm2Rf/Ω·cm2Qf-1·cm-2·s-1nfRct/Ω·cm2Qdl-1·cm-2·s-1ndlW/Ω·cm2·s-1/2
1 d3.011.82×1041.05×10-50.851.08×1044.01×10-50.66-
3 d2.133.81×1044.21×10-50.932.35×1049.21×10-50.60-
5 d2.982.16×1044.72×10-50.902.68×1041.43×10-40.58-
7 d3.092.15×1045.74×10-50.881.56×1042.19×10-40.57-
10 d2.884.32×1029.07×10-40.781.66×1043.15×10-40.774.53×10-4
Table 1  EIS fitting parameters of Q235 steel corrosion in SCP solution for different time
Fig.7  XRD pattern of 10 d corrosion of Q235 steel in SCP solution
Fig.8  SEM morphology of Q235 steel corroded in SCP solution for 10 d (a) surface morphology of Q235 steel; (b) pitting morphology of Q235 steel
ElementSpectrum1Spectrum2
Mass fraction/%Atomic fraction/%Mass fraction/%Atomic fraction/%
C K13.9321.527.1322.86
O K55.4364.287.3517.68
Ca K26.1912.121.361.30
Fe K2.730.9183.3757.30
Mg K1.110.85--
Cl K0.610.320.790.86
Total100100100100
Table 2  Surface EDS test results of Q235 steel after corrosion in SCP solution for 10 d
Fig.9  Model diagram of the corrosion process of Q235 steel in SCP solution (a) Passivation film formation and fracture stage; (b) Metastable pitting corrosion stage; (c) Ca2+ deposition and corrosion product formation stage
1 Hu R G. Electrochemical study on corrosion process of steel rebar/concrete system [D]. Xiamen: Xiamen University, 2004
胡融刚. 钢筋/混凝土体系腐蚀过程的电化学研究 [D]. 厦门: 厦门大学, 2004
2 Yi B, Lin D Y, Chen Y X, et al. Effect of Cl- and SO42- on corrosion behavior of reinforcing steel in simulated concrete pore solutions [J]. Corros. Sci. Prot. Technol., 2016, 28(002): 97
易博, 林德源, 陈云翔等. Cl-和SO42-对模拟混凝土孔隙液中钢筋腐蚀行为的影响 [J]. 腐蚀科学与防护技术, 2016, 28(002): 97
3 Li K Q, Yang L J, Xu Y Z, et al. Influence of SO42- on the corrosion behavior of Q235B steel bar in simulated pore solution [J]. Acta Metall. Sin., 2019, 055(004): 457
李恺强, 杨璐嘉, 徐云泽等. SO42-对模拟孔隙液中Q235B钢筋腐蚀行为的影响 [J]. 金属学报, 2019, 055(004): 457
4 Song J. Corrosion behavior of 304 stainless steel and Q235 carbon steel by electrochemical noise technique [D]. Tianjin: Tianjin University, 2012
宋杰. 304不锈钢和Q235碳钢腐蚀行为的电化学噪声检测研究 [D]. 天津: 天津大学, 2012
5 Zhao B, Li J H, Hu R G, et al. Study on the corrosion behavior of reinforcing steel in cement mortar by electrochemical noise measurements [J]. Electrochim. Acta., 2007, 52(12): 3976
6 Naghizade R., Shahidi Zandi M., Hosseini S. M. A.. Electrochemical noise analysis of corrosion behaviour of asymmetric electrodes made of mild steel in NaHCO3 solutions at different NaCl concentrations [J]. Meas., 2020, 43(155): 107501
7 Li Z, Lv J, Niu Z M, et al. Electrochemical noise of corrosion of X80 pipeline steel in Xinzhou soil environment [J]. Corros. Prot.,2017, 38(08): 608
李治, 吕建, 牛智民等. X80管线钢在新洲土壤中腐蚀的电化学噪声 [J]. 腐蚀与防护, 2017, 38(08): 608
8 Cui J, Yu D Y, Long Z W, et al. Application of electrochemical noise (EN) technology to evaluate the passivation performances of adsorption and film-forming type corrosion inhibitors [J]. J. Electroanal. Chem., 2019, 48(8): 855
9 Li J, Zhao L, Li B W, et al. Electrochemical noise characteristics of pitting corrosion of 304 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2012, 32(03): 235
李季, 赵林, 李博文等. 304不锈钢点蚀的电化学噪声特征 [J].中国腐蚀与防护学报, 2012, 32(03): 235
10 Dong Z H, Guo X P, Zheng J S, et al. Characteristics of electrochemical noise in local corrosion of 16Mn steel [J]. J. Chin. Soc. Corros. Prot., 2002, 22(05): 35
董泽华, 郭兴蓬, 郑家燊等. 16Mn钢局部腐蚀中的电化学噪声特征 [J]. 中国腐蚀与防护学报, 2002, 22(05): 35
11 Hu R G, Ye C Q, Dong S G, et al. Electrochemical noise measurement and wavelet analysis of steel bars in simulated concrete hole solution [J]. Electrochem., 2010, 16(02): 137
胡融刚, 叶陈清, 董士刚等. 模拟混凝土孔溶液中钢筋电化学噪音测量及小波分析 [J]. 电化学, 2010, 16(02): 137
12 Deng J H, Wang G, Hu J Z, et al. Simulation of pitting corrosion behavior of 304 stainless steel in marine atmosphere based on electrochemical noise research [J]. Electrochem., 2020, 26(02): 298
邓俊豪, 王贵, 胡杰珍等. 基于电化学噪声研究模拟海洋大气环境下304不锈钢的点蚀行为 [J]. 电化学, 2020, 26(02): 298
13 Xia D H, Song S Z, Behnamian Y. Detection of corrosion degradation using electrochemical noise (EN): review of signal processing methods for identifying corrosion forms [J]. Corros. Eng. Sci. Technol., 2016, 51(7): 527
14 An P L, Liang P, Ren J M, et al. Characteristics on electrochemical noise of pitting corrosion for high nitrogen austenitic stainless steels [J]. J. Chin. Soc. Corros. Prot., 2018, 38(01): 26
安朋亮, 梁平, 任建民等. 高氮奥氏体不锈钢点蚀行为的电化学噪声特征 [J]. 中国腐蚀与防护学报, 2018, 38(01): 26
15 Xia D H, Song S, Behnamian Y, et al. Review—Electrochemical Noise Applied in Corrosion Science: Theoretical and Mathematical Models towards Quantitative Analysis [J]. J. Electrochem. Soc.,2020, 167(8): 081507
16 Zhang J Q, Zhang S, Wang J M, et al. Analysis and application of electrochemical noise——Ⅰ. Principles of electrochemical noise analysis [J]. J. Chin. Soc. Corros. Prot., 2001, 21(05): 55
张鉴清, 张昭, 王建明等. 电化学噪声的分析与应用——Ⅰ. 电化学噪声的分析原理 [J]. 中国腐蚀与防护学报, 2001, 21(05): 55
17 Hu L H, Du N, Wang M F, et al. Electrochemical noise and electrochemical impedance spectroscopy to monitor the initial pitting behavior of 1Cr18Ni9Ti stainless steel [J]. J. Chin. Soc. Corros. Prot., 2007, 27(04): 233
胡丽华, 杜楠, 王梅丰等. 电化学噪声和电化学阻抗谱监测1Cr18Ni9Ti不锈钢的初期点蚀行为 [J]. 中国腐蚀与防护学报, 2007, 27(04): 233
18 Han L. A review on electrochemical noise analysis [J]. Corros. Prot., 2015, 36(01): 84
韩磊. 电化学噪声数据处理方法概述 [J]. 腐蚀与防护, 2015, 36(01): 84
19 Wang X, Wang J, Yue X. Characterization of corrosion process of Q235 carbon steel in simulated concrete pore solution by EIS and EN techniques [J]. Int. J. Electrochem. Sci., 2014, 9(11): 6558
20 Ye C Q, Hu R G, Dong S G, et al. EIS analysis on chloride-induced corrosion behavior of reinforcement steel in simulated carbonated concrete pore solutions [J]. J. Electroanal. Chem., 2013, 688(4): 275
21 Zhu Y C, Liu G M, Wang J J, et al. Electrochemical corrosion behaviors of typical grounding materials in water-saturated acid red soil [J]. Mater. Mech. Eng., 2020, 44(09): 36
朱亦晨, 刘光明, 王金金等. 典型接地材料在水饱和酸性红壤中的电化学腐蚀行为 [J]. 机械工程材料, 2020, 44(09): 36
22 Lin B. Study on inhibition effect of some organic inhibitors on carbon steel in carbonated simulatied concrete pore solutions [D]. Beijing: Beijing university of chemical technology, 2019
林冰. 模拟碳化混凝土孔隙液中几种有机缓蚀剂对碳钢的缓蚀作用 [D]. 北京: 北京化工大学, 2019
23 Du Y L, Zhang J X, Jiang J, et al. Corrosion behavior of reinforced steel in simulated pore solution with gradual augment of Cl- [J]. J. Chin. Soc. Corros. Prot., 2013, 33(04): 331
杜雅莉, 张俊喜, 蒋俊等. Cl-浓度渐变的混凝土孔隙液中钢筋的腐蚀过程 [J]. 中国腐蚀与防护学报, 2013, 33(04): 331
[1] GUO Tieming, XU Xiujie, ZHANG Yanwen, SONG Zhitao, DONG Zhilin, JIN Yuhua. Corrosion Behavior of Q345q Bridge Steel and Q345qNH Weathering Steel in a Mixed Medium of Simulated Industrial Environment Solution and Deicing Salt[J]. 材料研究学报, 2020, 34(6): 434-442.
[2] DUAN Tigang, HUANG Guosheng, MA Li, PENG Wenshan, ZHANG Wei, XU Likun, LIN Zhifeng, HE Hua, BI Tieman. Construction and Anti-corrosion Performance of a Self-healing Coating on Ni-Co Plating/Q235 Carbon Steel[J]. 材料研究学报, 2020, 34(10): 777-783.
[3] XU Long,LIU Fuchun,HAN En-Hou. Effect of PSS-PEDOT Surface-modified Zn Particles on Anticorrosion Performance of Acrylic Resin Coating[J]. 材料研究学报, 2019, 33(10): 776-784.
[4] Dalei ZHANG, Yuanyuan MIAO, He JING, Xiaohui DOU, Youhai JIN. Effect of Sulphite Deposits on Hydrogen Embrittlement Susceptivity of Hot-dip Galvanized Steel in Marine Atmospheric Environment[J]. 材料研究学报, 2018, 32(7): 533-540.
[5] Luhai ZHOU, Xicheng WEI, Chunyan WANG, Jun LU, Wurong WANG. Relationship Between Dry Sliding Tribological Behavior and Grain Sizes for T10 Steel[J]. 材料研究学报, 2017, 31(11): 833-838.
[6] Yueling GUO,En-Hou HAN,Jianqiu WANG. Short-term Oxidation Behavior of Domestic Forged and Solution Annealed 316LN Stainless Steel in High Temperature Pressurized Water[J]. 材料研究学报, 2015, 29(6): 401-409.
[7] Shinian LIU,Cheng WANG,Shengping FAN,Guohua LU,Fuhui WANG. Preparation and Anticorrosion Performance of Conductive Epoxy Resin Based Composite Coatings[J]. 材料研究学报, 2014, 28(11): 835-841.
[8] JIA Zhijun DU Cuiwei LIU Zhiyong GAO Jin LI Xiaogang. Effect of pH on the Corrosion and Electrochemical Behavior of 3Cr Steel in CO2 Saturated NaCl Solution[J]. 材料研究学报, 2011, 25(1): 39-44.
[9] GU Xunlei SHAN Yuqiao LIU Changsheng YU Xiaozhong. Research of magnetron sputtered Al–Mg alloy coatings on high-speed electro-galvanizing steel[J]. 材料研究学报, 2009, 23(5): 529-533.
No Suggested Reading articles found!