Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (9): 665-671    DOI: 10.11901/1005.3093.2016.662
ARTICLES Current Issue | Archive | Adv Search |
Localized Corrosion Resistance of Three Commonly-used Stainless Steels
Jingli SUN1,2(), Dan ZOU1, Jing JIN1, Li LI1, Haiying LIU1
1 Shanghai Aerospace Equipment Manufacturer, Shanghai 200245, China
2 Shanghai Spaceflight Precision Machinery Institute, Shanghai 201600, China
Cite this article: 

Jingli SUN, Dan ZOU, Jing JIN, Li LI, Haiying LIU. Localized Corrosion Resistance of Three Commonly-used Stainless Steels. Chinese Journal of Materials Research, 2017, 31(9): 665-671.

Download:  HTML  PDF(1393KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Three kinds of austenitic steels 1Cr18Ni9Ti, 304 and 316L all contain different minor elements. The localized corrosion behavior of them was comparatively investigated, including intergranular corrosion, pitting corrosion and stress corrosion. Results show that the addition of Ti and the low C content are beneficial to the enhancement of intergranular corrosion resistance of the steel. Among others, the solution treated 304 steel has the best pitting corrosion resistance owing to the highest content of Cr and N, while 316L steel has the best stress corrosion resistance in 42% boiling MgCl2 because of its high Ni content.

Key words:  materials failure and protection      localized corrosion      potentiodynamic polarization technique      intergranular corrosion test      slow strain rate test      minor elements     
Received:  10 November 2016     
ZTFLH:  TB304  
Fund: Supported by Shanghai Pujiang Program (No.15PJ1433600) and One of the Technical Basis Projects of Shanghai Academy of Spaceflight Technology

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.662     OR     https://www.cjmr.org/EN/Y2017/V31/I9/665

Alloy C P S Cr Ni Ti Mo N
1Cr18Ni9Ti 0.023 0.017 0.002 17.39 9.04 0.197
304 0.051 0.028 0.002 18.05 8.23 0.04
316L 0.019 0.03 0.003 16.83 10.07 2.05 0.01
Table 1  Chemical composition of three kinds of austenitic stainless steel (%, mass fraction, Fe rest)
Fig.1  Photographs of bended stainless steels at sensitization state after intergranular corrosion test (a)-(c) front view, (d)-(f) side view
Fig.2  Mettallographic photos of typical microstructures of three kinds of steels after intergranular corrosion test: (a)-(c) bending area, (d)-(f) flat area, (g)-(i) grain boundary area
Fig.3  Potential dynamic polarization curves of 1Cr18Ni9Ti, 304 and 316L stainless steels in 3.5% NaCl solution at room temperature
Alloy Ecorr /V Icorr /Acm-2 Eb /V
1Cr18Ni9Ti -0.215 7.44×10-8 0.092
304 -0.282 1.69×10-7 0.413
316L -0.164 5.38×10-8 0.268
Table2  Characteristics of polarization curves for three kinds of steels in 3.5% NaCl solution, room temperature
Fig.4  Micrographs of the stainless steels after pitting corrosion in 3.5wt.% NaCl solution (a) and (b) 1Cr18Ni9Ti; (c) and (d) 304; (e) and (f) 316L
Sample Rm/MPa A/% R'm/MPa A'/% ISSRT
1Cr18Ni9Ti-1# 660 59.5 430 54.5 0.366
1Cr18Ni9Ti-2# 658 59.0 433 54.0
304-1# 632 83.5 479 59.5 0.35
304-2# 631 84 470 58.5
316L-1# 563 70 461 58.5 0.266
316L-2# 572 78.5 452 59.5
Table 3  Results of stress corrosion experiment by slow strain rate test technique
[1] Jing X Z, Chen W, Yang W M.Metal material application handbook [M]. Xi'an: Shangxi Science and Technology Press, 1989(荆秀芝, 陈文, 杨武鸣. 金属材料应用手册[M]. 西安:陕西科学技术出版社,1989)
[2] Zheng H S.The research and prevention on intergranular corrosion of Austenitic stainless steel[J]. Mech. Electr. Eng. Technol., 2004, 33(1):46(郑海生. 奥氏体不锈钢晶间腐蚀问题的研究及防止[J]. 机电工程技术, 2004, 33(1):46)
[3] China aviation materials application manual editing committee. China Aeronautical materials handbook I: Structural Steel & stainless steel [M]. Beijing: China Standards Press, 2002(中国航空材料应用手册编辑委员会. 中国航空材料手册第1卷结构钢&不锈钢[M]. 北京:中国标准出版社, 2002)
[4] Zhou D M.The corrosion behavior of 316L stainless steel in the high chloride ion of ethylene glycol solution[D]. Sichuan: Southewest Petroleum University, 2011(周冬梅. 316L不锈钢在高含氯离子乙二醇溶液中的腐蚀行为[D]. 四川: 西南石油大学, 2011)
[5] Huang J H.Phasing-Out 1Cr18Ni9Ti and enlarging application of low-carbon and ultralow-carbon stainless steels[J]. Pressure Vessel Technol., 1986, 3(2): 50(黄嘉琥. 逐步淘汰1Cr18Ni9Ti推广应用低C、超低C不锈钢[J]. 压力容器, 1986, 3(2): 50)
[6] Liu Z D.The selection of Cr-Ni austenitic stainless steel[J]. Petro-chem. Equip. technol., 1999, 20(3): 39(柳曾典. 常用铬镍奥氏体不锈钢的选用[J]. 石油化工设备技术,1999, 20(3): 39)
[7] He C H, Wang S H.Corrosion type and influence factor of stainless steel[J]. Contemp. Chem. Ind., 2006, 35(1): 40(贺彩红, 王世宏. 不锈钢的腐蚀种类及影响因素[J]. 当代化工,2006, 35(1): 40)
[8] Wu J. Corrosion and corrosion protection technology IV: Stress corrosion cracking [J]. Corro. Prot., 1997, 18(5): 40(232)(吴剑. 不锈钢的腐蚀破环与防蚀技术(四)应力腐蚀破裂[J]. 腐蚀与防护, 1997, 18(5): 40(232)
[9] Xu Z H.Corrosion-resistant metals VI: austenitic stainless steel[J]. Corro. Prot., 2001, 22(6): 275(徐增华. 金属耐蚀材料第六讲奥氏体不锈钢[J]. 腐蚀与防护, 2001, 22(6): 275)
[10] Lin L F, Chao C Y, MacDonald D D. A point defect model for anodic passive films: II. Chemical Breakdown and Pit Initiation[J]. J. Electroanal. Soc., 1981, 128(6): 1194
[11] Chao C Y, Lin L F, MacDonald D D. A point defect model for anodic passive films: III. Impedance Response[J]. J. Electroanal. Soc., 1982, 129(9): 1874
[12] Zhao P.Application of molybdenum in stainless steel[J]. China Molybdenum Ind., 2004, 28(5): 3(赵朴. 钼在不锈钢中的应用[J]. 中国钼业, 2004, 28(5): 3)
[13] Halada G P, Kim D, Clayton C R.Influence of nitrogen on electrochemical passivation of high-nickel stainless steels and thin molybdenum-nickel films[J]. Corrosion, 1996, 52(1): 36
[14] Ives M B, Lu Y C, Luo J L.Cathodic reactions involved in metallic corrosion in chlorinated saline environments[J]. Corro. Sci., 1991, 32(1): 91
[15] Yu C Y.Analysis of Anti - pitting - corrosion Performance of N2 in Stainless Steel[J]. Corro. Prot. Petrochem. Ind., 2012, 29(3): 23(余存烨. 氮对不锈钢抗点腐蚀性能作用分析[J]. 石油化工腐蚀与防护, 2012, 29(3): 23)
[16] Yang W, Gu J X, Li Q S.Localized corrosion of metals [M]. Beijing: Chemistry Industry Press, 1995(杨武, 顾濬祥, 黎樵燊. 金属的局部腐蚀[M]. 北京: 化学工业出版社, 1995)
[1] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[4] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[5] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[6] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[7] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[8] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[9] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
[10] LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. 材料研究学报, 2020, 34(5): 345-352.
[11] WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy[J]. 材料研究学报, 2020, 34(3): 183-190.
[12] YIN Qi,LIU Miaoran,LIU Yuwei,PAN Chen,WANG Zhenyao. Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test[J]. 材料研究学报, 2019, 33(9): 705-712.
[13] SHANG Baihui,MA Yuantai,MENG Meijiang,LI Ying. Characterisation of Passive Film on HRB400 Steel Rebar in Curing Stage of Concrete[J]. 材料研究学报, 2019, 33(9): 659-665.
[14] Zhuman SONG,Rui LI,Miao QIAN,Wenbo SHI,Ke QIAN,Heng MA,Qingyin CHEN,Guangping ZHANG. Optimizing Prestress of Fatigue Property-dominated 8.8-grade Bolts[J]. 材料研究学报, 2019, 33(8): 629-634.
[15] Xu ZHANG,Shanping LU. Corrosion Behavior of Ni-based Weld Metals with Different Mo Content in a Nitric Acid Aqueous Solution[J]. 材料研究学报, 2019, 33(6): 401-408.
No Suggested Reading articles found!