Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (9): 659-664    DOI: 10.11901/1005.3093.2016.494
ARTICLES Current Issue | Archive | Adv Search |
Surface Modification of SiC Powders in Vitrified Grinding Wheel by In-situ Sol-gel Method
Yingying LIU, Long WAN(), Junsha WANG
College of Materials Science and Engineering , Hunan University, Changsha 410082, China
Cite this article: 

Yingying LIU, Long WAN, Junsha WANG. Surface Modification of SiC Powders in Vitrified Grinding Wheel by In-situ Sol-gel Method. Chinese Journal of Materials Research, 2017, 31(9): 659-664.

Download:  HTML  PDF(1016KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

KH550 silane coupling was used as surfactant to modify the surface of SiC powders. The morphology, surface property and particle size distribution of SiC powders before and after modification were investigated by scanning electron microscope, X-ray diffractometer, laser particle analyzer and infrared spectroscopy. Results show that the surface of SiC powders was coated with a thin layer of KH550 via grafting reaction, which did not change phase constituent and structure of the SiC powders. After modification, the agglomeration of powders alleviated , and thus their average size also decreased. Due to the increase of electrostatic repulsion and steric hindrance among SiC powders, the suspensibility and dispersibility of powders in sol were improved. To simulate the production of vitrified grinding wheel of SiC/ceramic composite, simulate sintered compacts of SiC/ceramic composite were fabricated comparatively with plain- and the modified-SiC by means of a twostep process: forming by in-situ sol-gel method and then sintering at desired temperature. It follows that the produced sintered compact with the modified SiC shows better uniformity in microstructure and higher bending strength as well.

Key words:  inorganic vitrified materials      surface modification      silane coupling      SiC      dispersibility      Bend strength     
Received:  22 August 2016     
ZTFLH:  TB332  
Fund: Supported by National Natural Science Foundation of China (No.51375157)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.494     OR     https://www.cjmr.org/EN/Y2017/V31/I9/659

Component SiO2 Al2O3 ZnO Na2O Li2O
Content/% 51.6 7.1 9.1 10.7 21.5
Table 1  Formula of the vitrified bond (%, mol)
Fig.1  IR of SiC powder before and after modified (a) unmodified SiC powder; (b) modified SiC powder
Fig.2  XRD patterns of SiC powder before and after modified
Fig.3  Particle size distribution of SiC power before and after modified (a) unmodified SiC; (b) 1.5 g KH550; (c) 2.5 g KH550; (d) 3.5 g KH550
Sample D10/μm D50/μm D90/μm
a 1.58 4.11 6.3
b 1.27 3.69 5.75
c 1.05 1.70 5.12
d 1.12 3.48 6.72
Table 2  Particle size distribution of SiC power before and after modified
Fig.4  Settlements of SiC power modified by KH550 with different mass fractions in sol after standing 4 h (a) unmodified SiC powders; (b) 1.5 g KH550; (c) 2.5 g KH550; (d) 3.5 g KH550
Fig.5  SEM photographs of SiC powder before and after modified (a) unmodified SiC powder; (b) modified SiC powder
Fig.6  Fracture images of composites with before and after modified (a) unmodified SiC powder; (b) modified SiC powder
Technological Unmodified SiC powder Modified SiC powder
Porosity/% 26.34 22.69
Volume density
/gcm-3
1.89 2.12
Table 3  Properties of composites with before and after modified
Fig.7  Bend strength and hardness of composites with before and after modified
[1] Wang X K.Mechanical Processing Handbook: Precision machining and nano-machining high speed cutting machining difficult materials[M]. Beijing: Machinery Industry Press, 2008(王先逵. 机械加工工艺手册: 精密加工和纳米加工高速切削难加工材料的切削加工[M]. 北京: 机械工业出版社, 2008)
[2] Sabri L, Mansori Ei M.Process variability in honing of cylinder liner with vitrified bonded diamond tools[J]. Surface and Coatings Technology, 2009, 204(6/7):1046
[3] Li X, Tie S N.Research on Surface modification of SiC powder with KH550 amino organosilances in semiconduct or manufacturing, Materials Review[J]. 2011, 25(7): 53(李星. 铁生年. KH550硅烷偶联剂对半导体制造用碳化硅微粉表面的改性研究[J].材料导报, 2011, 25(7):53)
[4] Zhang M, Wang X G, Chen J, et al.Eeffect of surface modification on the β-SiC powder fluidity[J]. Bulletin of the Chinese Ceramic Socity, 2011, 30(3): 519(张敏, 王晓刚, 陈进等. 表面改性对β-SiC微粉流动性的影响[J]. 硅酸盐通报, 2011, 30(3): 519)
[5] Wang X G, Zhang R, Deng L R, et al. Study on surface modification of β-SiCpowder by polythyleneimine[J]. Materials Review, 2013, 27(5):63(王晓刚, 张瑞, 邓丽荣等.聚乙烯亚胺对β–碳化硅微粉的表面改性研究[J]. 材料导报, 2013, 27(5): 63)
[6] Novak S, Kovac J, Draic G, et al.Surface characteristic and modification of submicron and nanosized silicon carbide powders[J].J Eur Ceram Soc, 2007, 27:3545
[7] JI X L, Zheng C H, Wei L, et al.Study on surface modification of silicon carbide powders with aminoorganosilanes[J]. Chem Bio-Eng, 2008, 25(1):21(吉晓莉, 郑彩华, 魏磊, 等.氨基硅烷偶联剂表面改性SiC微粉的研究[J]. 化学与生物工程, 2008, 25(1):21)
[8] Tie S N, Li X.Surface modification of SiC powder with silence coupling agent[J].Journal of the Chinese Cerramic Society, 2011, 39(3):409(铁生年, 李星. 硅烷偶联剂对碳化硅微粉的表面改性, 硅酸盐学报, 2011, 39(3): 409)
[9] J S Wang, L Wan, S Y Hao, et al.Surface modification of diamond and its effect on the mechanical properties of diamond/epoxy composites[J]. Sci. Eng. Compos. Mater., 2015, 10: 1515
[10] Chen J, Wan L, Shi D, et al.Effects of surfactant on sufpension property of diamond in resin and associativity between diamond and resin[J]. Acta Materiae Compositae Sinica, 2014, 31(6): 1416(陈静, 万隆, 时丹等. 表面活性剂对金刚石在树脂中悬浮性及与树脂结合性的影响[J]. 复合材料学报, 2014, 31(6): 1416)
[11] M K Wei, G J Zhang, Q D Wu.Processing of highly concentrated polyacrylamide-coated silicon carbide suspensions[J]. Ceramics International, 2004, 30(2): 125
[12] Li F S.Ultrafine Powder Technology[M]. National Defense Industry Press, 2001(李凤生. 超细粉体技术[M]. 国防工业出版社, 2001)
[13] Winkler J, Klinke E, et al.Theory for the deagglomeration of pigments clusters in dispersion machinery by mechanical force[J] Journal of Coating Technology, 1987, 59(754): 45
[14] Cihangir Duran, Hasan Gocmez, Huseyin Yilmaz.Dispersion of mechanochemically activated SiC and Al2O3 powders[J] Materials Science and Engineering. 2008, 475: 23
[15] Zhang X H, Hou Y, Hu P, et al.Dispersion and co-dispersion of ZrB2 and SiC nanopowders in ethanol[J]. Ceramics.2012, 38: 2733
[16] Shu D L.Mechanical Properties of Materials Engineering[M]. Beijing: Machinery Industry Press, 2010(束德林. 材料工程力学性能[M]. 北京: 机械工业出版社, 2010)
[17] HU W D.Study on preparation vitrified bond diamond grinding wheel by sol-gel method[D]. Changsha: Hunan University, 2013(胡伟达. 溶胶凝胶法制备陶瓷结合剂金刚石砂轮的研究[D]. 长沙: 湖南大学, 2013)
[18] Hou Y G.Ceramic Abrasives Manufacturing[M]. Beijing: China Light Industry Press, 2010(侯永改. 陶瓷磨具制造[M]. 北京:中国轻工业出版社, 2010)
[1] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[2] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[3] WANG Jun, WANG Kelu, LU Shiqiang, LI Xin, OUYANG Delai, QIU Qian, GAO Xin, ZHANG Kaiming. Strain Compensation Physical Constitutive Model and Processing Map of TA5 Titanium Alloy[J]. 材料研究学报, 2022, 36(3): 175-182.
[4] CUI Li, SUN Lili, GUO Peng, MA Xin, WANG Shuyuan, WANG Aiying. Effect of Deposition Time on Structure and Performance of Diamond-like Carbon Films on PEEK[J]. 材料研究学报, 2022, 36(11): 801-810.
[5] LIU Chao, WANG Xin, MEN Yue, ZHANG Haoyu, ZHANG Siqian, ZHOU Ge, CHEN Lijia, LIU Haijian. Dynamic Recrystallization of Ti-6Al-4V Alloy During Hot Compression[J]. 材料研究学报, 2021, 35(8): 583-590.
[6] TANG Kaiyuan, HUANG Yang, HUANG Xiangzhou, GE Ying, LI Pinting, YUAN Fanshu, ZHANG Weiwei, SUN Dongping. Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis[J]. 材料研究学报, 2021, 35(4): 259-270.
[7] WAN Wei, CAO Xiaoming, ZHANG Jinsong. Erosion Performance for Co-continuous Phase Composite of SiC Foam Ceramic/Ductile Iron[J]. 材料研究学报, 2020, 34(5): 361-367.
[8] SHI Congyun,WANG Jinfeng,CHEN Hongxiang,YANG Xumeng,DU Changjun,LI Guangyao,LIU Peng,CAI Haohao. Preparation and Properties of Epoxy Resin Composites Incorporated with Optical Fiber Preform Waste[J]. 材料研究学报, 2020, 34(1): 57-63.
[9] MU Yang,LI Hao. Effects of Micron Al2O3 Filler on Flexural Strength and High-temperature Microwave Absorbing Properties of SiCf/BN/SiC Composites[J]. 材料研究学报, 2019, 33(11): 865-873.
[10] XU Long,LIU Fuchun,HAN En-Hou. Effect of PSS-PEDOT Surface-modified Zn Particles on Anticorrosion Performance of Acrylic Resin Coating[J]. 材料研究学报, 2019, 33(10): 776-784.
[11] Yu TONG,Wanhong LI,Jia DONG,Xuejun SONG,Han WANG,You ZENG. Suspension Dispersibility and Tribological Properties of Graphene-modified Lubricant Oil[J]. 材料研究学报, 2019, 33(1): 59-64.
[12] Fei LIU, Min LIU, Jie MAO, Ziqian DENG, Jingtao MA, Changguang DENG, Dechang ZENG. Influence of H2 Flow Rate on Structure and Erosion Resistance of Thermal Barrier Coatings Prepared by Plasma Spray-Physical Vapor Deposition[J]. 材料研究学报, 2018, 32(9): 641-646.
[13] Yunhua LU, Jican HAO, Lin LI, Jing SONG, Guoyong XIAO, Tonghua WANG. Preparation and Gas Separation Properties of PIM-CO19 Based Thermally Induced Rigid Membranes[J]. 材料研究学报, 2018, 32(4): 271-277.
[14] Renzheng JIANG, Yilai JIAO, Bo SUN, Xiaodan YANG, Zhenming YANG, Jinsong ZHANG. Preparation of Foam Structured Catalyst ZnFe2O4-α-Fe2O3/SiC and its Performance in Oxidative Dehydrogenation of Butene[J]. 材料研究学报, 2018, 32(3): 225-232.
[15] Zhenghua LIU, Jing WANG, Haiying DU, Huisheng WANG, Xiaogan LI, Xiaofeng WANG. Joint Simulation of Electrospinning Trajectory[J]. 材料研究学报, 2018, 32(2): 127-135.
No Suggested Reading articles found!