Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (2): 149-155    DOI: 10.11901/1005.3093.2015.403
Orginal Article Current Issue | Archive | Adv Search |
Numerical Simulation Analysis of Asymmetric Fatigue Failure for Iced Electric Power Transmission Line
BAI Ru1, CAI Gang2, ZHANG Xiaomin2, CHEN Wenqi1, JIANG Yu1,*()
1. College of Material Science and Engineering , Sichuan University Chengdu 610000, China
2. State Grid Sichuan Electric Power Research Institute, Chengdu 610072, China
Cite this article: 

BAI Ru, CAI Gang, ZHANG Xiaomin, CHEN Wenqi, JIANG Yu. Numerical Simulation Analysis of Asymmetric Fatigue Failure for Iced Electric Power Transmission Line. Chinese Journal of Materials Research, 2016, 30(2): 149-155.

Download:  HTML  PDF(2085KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Accident of icing induced line break occurred for the electric power transmissionline connecting Yucheng to Pugein the winter of 2011. Based on the observation and measured data, a broken section of the LGJ-630/45-type power line of stranded aluminum wires with steel core exhibited 12 broken aluminum wires with typical brittle fracture characteristics, but the rest wires were ductile fractured. On the basis of the theory of statics and dynamics of catenary beam element mode and large deflection bending beam element mode, the line breaking was analyzed by using ANSYS finite element method. Results show that the brittle fracture of 12 broken wires may be caused by fatigue, then the effective section of power line decreases, which further caused the rest wires to be broken due to overload. Icing and fluctuating wind lead the stress of the operating power line to be increased from 55.4 MPa to 97.9 MPa, which is the main cause to the line breaking. The power line resonate induced by the fluctuating wind, thus the mean stress of asymmetric fatigue increases, , and the fatigue life of the line significant decreases. Corresponding to all the above considerations, the realstress of the operating line increases from 97.9 MPa to 275.2 MPa and thereby the ductile fracture occurs due to that the real stress exceeded the failure stress of 221 MPa of the operating line.

Key words:  materials failure and protection      lead break      brittle fracture      ductile fracture      asymmetric fatigue      fatigue life     
Received:  13 July 2015     
ZTFLH:  TG430  
About author:  *To whom correspondence should be addressed, Tel: 13568899519, E-mail: JYscuniversity@163.com

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.403     OR     https://www.cjmr.org/EN/Y2016/V30/I2/149

Parameters Value
Type LGJ-630/45
H/m 2700
L/m 280
D/m 0.0338
m/kgkm-1 2079.2
E/MPa 69000
α/℃-1 11.8×10-6
Operating stress/MPa 55.2
Failure stress/MPa 221
Table 1  Characteristic parameters of power line
Fig.1  Fracture photograph of tension resistance section and suspension points
Fig.2  Section photograph of power line
Fig.3  The changing curve of operating stresses with ice thickness
Fig.4  The changing curve of operating stresses with wind speed
Fig.5  The changing curve of operating stresses with ice thickness and wind speed
Fig.6  The inherent frequency and mode shape of power line: (a) the first-order modal; (b) the second-order modal
Fig.7  Fluctuating wind speed time series and the power spectral density (PSD) curve of fluctuating wind
Fig.8  Time-history response curve of stress
Operating stress
/MPa
Cycle times
/time
Limit cycle times
/105time
Operating stress/MPa Cycle times
/time
Limit cycle times
/105time
80 72 4550 90 44 7.62
82 68 3176 92 56 5.33
84 56 217 94 60 3.01
86 44 106 96 96 1.11
88 36 12 98 36 1.08
Table 2  Statistics of operating stress and cycle time
1 GB50545-2010, Design specifications of overhead transmission line, National Standards of People's Republic (Beijing, Standards Press of China, 2010)
(GB50545-2010, 《110 kV-750 kV架空输电线路设计规范》, 中华人民共和国国家标准(北京, 中国标准出版社, 2010))
2 ZHONG Qunpeng, ZHAO Zihua, Fracture Study (Beijing, High Education Press, 2006)p.65
(钟群鹏, 赵子华, 断口学(北京, 高等教育出版社, 2006)p.65)
3 ZHANG Xiangting, Wind Effect on Structures (Beijing, China Architecture and Building Press, 2006)p.27
(张相庭, 结构风工程( 北京, 中国建筑工业出版社, 2006)p.27)
4 SHAO Tianxiao,Wire and Mechanical Calculation of Overhead Transmission Lines ( Beijing, China Electric Power Press, 2003)p.13
(邵天晓, 架空送电线路的电线力学计算( 北京, 中国电力出版社, 2003)p.13)
5 The PRC standards of the power industry, The Technical Specification for High-lifted Transmission Line Design DL/T 5154-2002 ( Beijing, Standards Press of China, 2002)
(中华人民共和国电力行业标准, 架空送电线路杆塔结构设计技术规定DL/T 5154-2002(北京, 中国电力出版社, 2002))
6 WANG Xiaogang, LILeyi, WANG Hailan, ZHOU Cunlong, HUANG Qingxue, Numerical Modeling for Roller Leveling Process of Bimetal-plate, Chinese Journal of Materials Research, 28(4), 308(2014)
(王效岗, 李乐毅, 王海澜, 周存龙, 黄庆学, 双金属复合板材辊式矫直的数值模型, 材料研究学报, 28(4), 308(2014))
7 MO Fang, YAN Huifen, ZHENG Zijun, XU Demei, CHEN Wenlong, Distribution features analysis of wind resource in liangshan, Plateau and Mountain Meteorology Research, 33(2), 57(2013)
(莫芳, 晏惠芬, 郑自君, 胥德梅, 陈文龙, 凉山州风资源分布特征分析, 高原山地气象研究, 33(2), 57(2013))
8 GB 500545-2010, National Standards of People's Republic(Beijing, Standards Press of China, 2010)
(GB 500545-2010,中华人民共和国国家标准(北京, 中国标准出版社, 2010))
9 XIAO Duoyan, TAN Weibin, ZHANG Wei, A practical method of real-time measurement for power system frequency, Power System Protection and Control, 42(21), 29(2014)
10 (肖朵艳, 谭卫斌, 张维, 一种使用的电力系统频率实时测量方法, 电力系统保护与控制, 42(21), 29(2014))
11 ZHANG Xiangting, The Wind Pressure and Wind Vibration of Structure (Shanghai, Tongji University Press, 1985 )p.37
(张相庭, 结构风压和风振计算(上海, 同济大学出版社, 1985)p.37)
ZHANG Yuan, HAO Lili, DAI Jiaqi, Overview of the equivalent model research for wind farms, Power System Protection and Control, 43(6), 138(2015)
(张元, 郝丽丽, 戴嘉祺, 风电场等值建模研究综述, 电力系统保护与控制, 43(6), 138(2015))
12 R. P. Li, N. Zhou, W. H. Zhang, G. M. Mei, Fluctuating wind field and wind-induced vibration response of catenary based on AR model, Journal of Traffic and Transportation Engineering, 13(4), 56(2013)
13 KONG Deyi, Research on transmission line aeolian vibration and vibration control based on dynamic method,Doctoral Dissertation Huazhong University of Science and Technology(2009)
(孔德怡, 基于动力学方法的特高压输电线微风振动研究基于动力学方法的特高压输电线微风振动研究, 博士论文,华中科技大学(2009))
14 Y. Liu, Z. D. Qian, K. Q. Xia, Mechanical response of transmission lines based on sliding cable element, Journal of Central South University, 21(8), 3370(2014)
15 HAN Yinquan, LIANG Shuguo, CHEN Yin, ZHANG Dongbing, Model experiment and analysis of dynamic tension of long span transmission line, High Voltage Engineering, 34(5), 978(2008)
(韩银全, 梁枢果, 陈寅, 张冬兵, 大跨越导线动张力计算和模型实验, 高电压技术, 34(5), 978(2008))
16 YAO Weixing,Fatigue Life Prediction of Structure ( Beijing, National DefenceIndustry Press, 2003)p.28
(姚卫星,结构疲劳寿命分析( 北京, 国防工业出版社, 2003)p.28)
17 SHU Delin,Mechanical Property of Engineering Materials ( Beijing, China Machine Press, 2009)p.79
18 (束德林, 工程材料力学性能(北京, 机械工业出版社, 2009)p.79)
A. K. Khosrovanch, N. E. Dowling, Fatigue loading history reconstruction based on the rain-flow technique, International Journal of Fatigue, 12(2), 99(1990)
19 DONG Jie, CHEN Xuedong, FAN Zhichao, JIANG Huifeng, JIANG Heng, LU Shouxiang, High temperature fatigue creep behavior and life prediction of 316L stainless steel under 2-step load, Chinese Journal of Material Research, 23(5), 541(2009)
20 (董杰, 陈学东, 范志超, 江慧丰, 姜恒, 陆守香, 316L不锈钢的高温疲劳蠕变行为和寿命预测, 材料研究学报, 23(5), 541(2009))
W. L. Qu, J. W. Wang, Y. W. Tan, Z. Wang, Transmission tower's residual life prediction based on fatigue cumulative damage, Journal of Wuhan University of Technology, 29(1), 149(2007)
(瞿伟廉, 王锦文, 谭亚伟, 汪震, 基于疲劳累积损伤的输电塔结构剩余寿命估计, 武汉理工大学学报, 29(1), 149(2007))
21 L. L. Ban, W. J. Hui, Q. L. Yong, Y. Q. Wen, H. Dong, High cycle fatigue behavior of medium-carbon trip steel at different tensile strength levels, Chinese Journal of Materials Research, 22(6), 629(2008)
(班丽丽, 惠卫军, 雍岐龙, 翁宇庆, 董瀚, 不同强度中碳TRIP钢的高周疲劳破坏行为, 材料研究学报, 22(6), 629(2008))
22 LI Shunming, Mechanical Fatigue and Reliability Design (Shanghai, Science Press, 2006)p.78
(李舜酩,机械疲劳与可靠性设计( 上海, 科学出版社, 2006)p.78)
[1] LIU Tianfu, ZHANG Bin, ZHANG Junfeng, XU Qiang, SONG Zhuman, ZHANG Guangping. Effect of Notch Stress Concentration Factors on Low-cycle Fatigue Performance of TC4 ELI Alloy[J]. 材料研究学报, 2023, 37(7): 511-522.
[2] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[3] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[4] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[5] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[6] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[7] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[8] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[9] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[10] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
[11] LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. 材料研究学报, 2020, 34(5): 345-352.
[12] WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy[J]. 材料研究学报, 2020, 34(3): 183-190.
[13] SHANG Baihui,MA Yuantai,MENG Meijiang,LI Ying. Characterisation of Passive Film on HRB400 Steel Rebar in Curing Stage of Concrete[J]. 材料研究学报, 2019, 33(9): 659-665.
[14] YIN Qi,LIU Miaoran,LIU Yuwei,PAN Chen,WANG Zhenyao. Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test[J]. 材料研究学报, 2019, 33(9): 705-712.
[15] Zhuman SONG,Rui LI,Miao QIAN,Wenbo SHI,Ke QIAN,Heng MA,Qingyin CHEN,Guangping ZHANG. Optimizing Prestress of Fatigue Property-dominated 8.8-grade Bolts[J]. 材料研究学报, 2019, 33(8): 629-634.
No Suggested Reading articles found!