Please wait a minute...
Chinese Journal of Materials Research  2016, Vol. 30 Issue (2): 108-114    DOI: 10.11901/1005.3093.2015.287
Orginal Article Current Issue | Archive | Adv Search |
Effect of New Kinds of Sillitin on Performance of Polyurethane Coating for Electric Power Fittings
ZHAO Shuyan1, CHEN Junjun2, LIU Fuchun1,**(), XU Song2, KE Wei1, HU Botao2, JIE Ganxin3
1. Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. Hunan Electric Power Corporation Research Institute, Changsha 410007, China
3. State Key Laboratory of Environmental Adaptability for Industrial Products,China National Electric Apparatus Research Institute Co., Ltd, Guangzhou 510633, China
Cite this article: 

ZHAO Shuyan, CHEN Junjun, LIU Fuchun, XU Song, KE Wei, HU Botao, JIE Ganxin. Effect of New Kinds of Sillitin on Performance of Polyurethane Coating for Electric Power Fittings. Chinese Journal of Materials Research, 2016, 30(2): 108-114.

Download:  HTML  PDF(4628KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Polyurethane coatings with two kinds of sillitin, i.e. M type and Z type sillitin respectively as filler were prepared and sprayed on hot dip galvanized steel sheets. The coatings exhibited better mechanical properties than the simple polyurethane coating, i.e. the wear resistance and the hardness of the polyurethane coating may be enhanced by 57.1% and 14.5%, as well as 85.7% and 41.8% for the addition of M type and Z type sillitin respectively. The coatings with the two types of sillitin exhibited also better corrosion resistance. The reason is that two types of sillitin are of a special structure composed of micro-sized granular silica and nano-flake kaolin clay, and the sillitin possesses high amount of nano-flake, which may be beneficial to the enhancement of the permeation resistance and mechanical properties of the coatings.

Key words:  materials failure and protection      electrical fittings protective coating      electrochemical impedance spectroscopy      new sillitin      abrasion resistance     
Received:  15 May 2015     
ZTFLH:  TG174  
Fund: *Supported by Project of China Power State Grid No. KG12K16004 and the Key Technology of Corrosion Control onWind Power Equipment AcademicianWorkstation Project No. 2013B090400023.
About author:  **To whom correspondence should be addressed, Tel: (024)23915895, E-mail: fcliu@imr.ac.cn

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.287     OR     https://www.cjmr.org/EN/Y2016/V30/I2/108

Fig.1  SEM micrographs and EDS of two kinds of sillitin powders. (a, c) sillitin M powder, (b, d) sillitin Z powder, (e) particulate substance, (f) flaky substance
Fig.2  XRD spectra of two kinds of sillitin powders. (a) sillitin M powder, (b) sillitin Z powder
Sillitin types SiO2 Al2O3 K2O TiO2 Fe2O3 CaO SO3 NiO Na2O MgO P2O5 ZrO2
M 90.8190 7.8266 0.4131 0.2922 0.2740 0.1165 0.1127 - 0.0805 0.0410 0.0112 0.0032
Z 87.3488 10.7847 0.4263 0.4198 0.6610 0.1791 - 0.0050 0.0760 0.0619 0.0325 0.0047
Table 1  XRF results for two kinds of sillitin powder (%, mass fraction)
Fig.3  SEM images of cross sections of sillitin Z coating. (a) 200 times, (b) 1000 times
Blank coating sample M coating sample Z coating sample
Thickness/μm 24±2 26±2 26±1
Gloss/60° 146 139 150
Pendulum hardness 0.55 0.63 0.78
Adhesion/Grade 1 1 1
Flexibility/mm 1 1 1
Impact resistance/kgcm 50 50 50
Table 2  Optical and mechanical properties of the coated sample and blank samples coated sillitin coating
Coatings The average value
of abrasion/mg
Blank coating sample 14
M coating sample 6
Z coating sample 2
Table 3  Datas of abrasion resistance of blank coating sample and sillitin coated sample
Fig.4  SEM micrographs of blank coating sample and sillitin coated samples after wear test. (a) blank coating sample, (b) M coating sample, (c) Z coating sample
Fig.5  Photos of blank coating sample and sillitin coated samples after salt spray tests for 300 h. (a) blank coating sample, (b) M coating sample, (c) Z coating sample
Coatings The average value of rust
expanding width/mm
Blank coating sample 2.7
M coating sample 1.2
Z coating sample 0.9
Table 4  Rust expanding width of blank coating sample and sillitin coated samples
Fig.6  Bode plots of blank coating sample and sillitin coated samples in immersion tests time. (a) blank coating sample, (b) M coating sample, (c) Z coating sample
Fig.7  Equivalent electric circuit diagrams of the coated panels at different immersion stages. (a) early immersion stage, (b) late immersion stage. Rs: Solution resistance; Qc: Coating capacitance; Rc: Coating resistance; Qdl: Electric double layer capacitor; Rct: Charge transfer resistance
Fig.8  Change of coating resistances and capacitances with immersion time
Fig.9  Change of water absorption of the coatings with immersion time
Fig.10  Models of corrosion mechanism of the sillitin coating. (a) blank coating sample, (b) sillitin coating sample
1 MO Zenglu, CHENG Zhiyun, Corrosion and prevention of zinc deposit of transission towers, Electric Power Constraction, 25(1), 22(2004)
(默增禄, 程志云, 输电线路杆塔的腐蚀与防治对策, 电力建设, 25(1), 22(2004))
2 CHE Dejing, ZHANG Wanyou, ZHANG Daquan, AN Zhongxun, ZHOU Guoding, Corrosion of eng-fitted metallic hardware of composite insulator in power transmission line, Corrosion & Protection, 25(11), 461(2004)
(车德竞, 张万友, 张大全, 安仲勋, 周国定, 输电线路合成绝缘子端部金具的腐蚀研究, 腐蚀与防护, 25(11), 461(2004))
3 CHEN Junjun, HU Jiarui, XIE Yi, HU Botao, Corrosion analysis and protection measures for fittings of over head power transmission lines, Electric Power Construcion, 34(8), 95(2013)
(陈军君, 胡加瑞, 谢亿, 胡波涛, 架空输电线路金具腐蚀分析及防护对策, 电力建设, 34(8), 95(2013))
4 ZHANG Daquan, CHE Dejing, ZHANG Wanyou, LIANG Lei, Study on crevice corrosion of end-fitted metallic hardware of composite insulator, Proceedings of the CSEE, 26(3), 86(2006)
(张大全, 车德竞, 张万友, 梁磊, 合成绝缘子端部金具的缝隙腐蚀研究, 中国电机工程学报, 26(3), 87(2006))
5 GENG Huimin, Transmission lines with the common faults and structure improvement Silicon Valley,18), 135(2013)
(耿慧敏, 输电线路金具常见故障及结构改进分析, 硅谷, (18), 135(2013))
6 WEI Bin, Adsorption research La,Nd clay minerals and soil inorganic relatively rare earth elements,Masters Thesis,Anhui Agricultural University, (2011)
(魏斌, 粘土矿物及土壤无机相对稀土元素 La,Nd 的吸附性研究, 硕士学位论文,安徽农业大学, (2011))
7 D. M. Brasher, A. H. Kingsbury, Plasma-polymerised coatings used as pretreatment for aluminium alloys, Apple Chemisty, 4(2), 62(1954)
8 GU Xiaowen, ZHANG Xianru, XU Zheng, Synthesis and properties of kaolinite/acrylamide intercalation compound by microwaves, Jiangsu Ceramics, 39, 6(2006)
(顾晓文, 张先如, 徐政, 高岭石/丙烯酰胺插层复合物的微波制备及其表征, 江苏陶瓷, 39, 6(2006))
9 CHEN Xinggang, QIN Xiaoming, HOU Guixiang, ZHANG Lei, WANG Runzeng, Research progress intercalation of Kaolin, China Ceramics, 46(7), 15(2010)
(陈兴刚, 秦晓明, 侯桂香, 张磊, 王润增, 高岭土插层改性研究进展, 中国陶瓷, 46(7), 15(2010))
10 ZHANG Yinmin, LIU Qinfu, HAO Junkai,TU Tingting Advances in researching intercalation and splitting of Kaolin,China Non-metallic Mining Industry Herald, (2), 15(2010)
(张印民, 刘钦甫, 郝军凯, 涂婷婷, 高岭土插层-剥片研究进展 ,中国非金属矿物工业导刊, (2), 15(2010))
11 S. González, F. Cáceres, V. Fox, R. M. Souto, Resistance of metallic substrates protected by an organic coating containing aluminum powder, Progress in Organic Coatings, 46(4), 317(2003)
12 J. González-Guzmán, J. J. Santana, Resistance of metallic substrates protected by an organic coating containing glass flakes, Progress in Organic Coatings, 68(3), 240(2010)
13 JIAO Zhiwei, LIU Kui, Application of metallic flake pigments in anticorrosive coatings, Materials protection, 45(11), 38(2012)
(焦志伟, 刘葵, 片状金属颜料在防腐蚀涂层中的应用, 材料保护, 45(11), 38(2012))
14 S. Sathiyanarayanan, S. Syed Azim, G. Venkatachari, Corrosion protection coating containing polyaniline glass flake composite for steel, Electrochimica Acta, 53(5), 2087(2008)
15 JIN Xiaohong, ZHEN Tianshui, A Study on lamellar zinc based epoxy primers, Materials Protection, 32(4), 25(1999)
(金晓鸿, 郑添水, 鳞片状锌基环氧富锌底漆的研究, 材料保护, 32(4), 25(1999))
16 SHAO Yawei, GU Shengfei, ZHANG Tao, MENG Guozhe, Effect of size of mica filler on diffusion of water in epoxy coatings, Paint & Coating Industry, 37(10), 11(2007)
(邵亚薇, 顾胜飞, 张涛, 孟国哲, 云母填料尺寸效应对水在环氧涂层中扩散行为的影响, 涂料工业, 37(10), 11(2007))
17 H. Marchebois, S. Joiret, C. Savall, J. Bernard, S. Touzain, Characterization of zinc-rich powder coatings by EIS and Raman spectroscopy, Surface and Coatings Technology, 157(2/3), 151(2002)
18 YANG Zhengbo, YANG Zhonglin, GUO Wansheng, SONG Guangcheng, Study on the anticorrosion mechanism of flake zinc-rich coatings film, China Paint, 21(1), 19(2006)
(杨振波, 杨忠林, 郭万生, 宋广成, 鳞片状富锌涂层耐蚀机理的研究, 中国涂料, 21(1), 19(2006))
19 YU Xiaohui, ZHU Xiaoyun, GUO Zhongcheng, LONG Jinming, Development of amicable flake zinc based heavy duty anticorrosive epoxy coating, Surface Technology, 34(1), 53(2005)
(于晓辉, 朱晓云, 郭忠诚, 龙晋明, 鳞片状锌基环氧富锌重防腐涂料的研制, 表面技术, 34(1), 53(2005))
20 LEI Minjuan, ZENG Peng, XIE Guangrong, LI Xinbo, CHENG Zhun, Effect of flake glass on corrosion resistance of water-based zinc-aluminum alloy composite coating, Electroplating & Finishing, 31(7), 59(2012)
(雷敏娟, 曾鹏, 谢光荣, 李新波, 程准, 片状玻璃对水性复合锌铝合金涂层耐蚀性的影响, 电镀与涂饰, 31(7), 59(2012))
[1] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[4] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[5] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[6] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[7] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[8] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[9] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
[10] LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. 材料研究学报, 2020, 34(5): 345-352.
[11] WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy[J]. 材料研究学报, 2020, 34(3): 183-190.
[12] SHANG Baihui,MA Yuantai,MENG Meijiang,LI Ying. Characterisation of Passive Film on HRB400 Steel Rebar in Curing Stage of Concrete[J]. 材料研究学报, 2019, 33(9): 659-665.
[13] YIN Qi,LIU Miaoran,LIU Yuwei,PAN Chen,WANG Zhenyao. Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test[J]. 材料研究学报, 2019, 33(9): 705-712.
[14] Zhuman SONG,Rui LI,Miao QIAN,Wenbo SHI,Ke QIAN,Heng MA,Qingyin CHEN,Guangping ZHANG. Optimizing Prestress of Fatigue Property-dominated 8.8-grade Bolts[J]. 材料研究学报, 2019, 33(8): 629-634.
[15] Xu ZHANG,Shanping LU. Corrosion Behavior of Ni-based Weld Metals with Different Mo Content in a Nitric Acid Aqueous Solution[J]. 材料研究学报, 2019, 33(6): 401-408.
No Suggested Reading articles found!