Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (4): 299-306    DOI: 10.11901/1005.3093.2014.455
Current Issue | Archive | Adv Search |
Intergranular Corrosion of 316LN Stainless Steel Welded Joints
Dongdong WANG1,**(),Can LIANG1,Wenjie BAI1,Yongquan LI2,Quan DUAN1
1. School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
2. China Special Equipment Inspection and Research Institute, Beijing 100000, China
Cite this article: 

Dongdong WANG,Can LIANG,Wenjie BAI,Yongquan LI,Quan DUAN. Intergranular Corrosion of 316LN Stainless Steel Welded Joints. Chinese Journal of Materials Research, 2015, 29(4): 299-306.

Download:  HTML  PDF(3568KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The intergranular corrosion characteristics of 316LN austenitic stainless steel welded joints with different welding heat input in boiling nitric acid solution were investigated by metallography analysis and acoustic emission technology. The results show that the resistance to intergranular corrosion of welded joints deteriorated with the increasing welding heat input. The intergranular corrosion resistance of the weld zone is better than that of the heat affected zone and the base material. Five stages for the intergranular corrosion process can be differentiated according to the characteristics of the detected acoustic emission spectrum, such as oxidation, passivation, oxide film crack initiation, oxide film crack propagation and finally fast intergranular corrosion. In other words, in the acoustic emission spectrum, there exist an obvious energy peak by 20 kHz representing the oxidation signal; an obvious energy peak by 40 kHz of a burst-like signal representing the stage of passivation process; energy peaks in a range 80 to 100 kHz of burst-like signal representing the oxide film crack initiation; energy peaks by frequency of 60 kHz representing the stage of crack propagation; and finally a peak by 50 kHz of a burst-like signal with a slightly longer duration representing the stage of fast intergranular corrosion.

Key words:  materials failure and protection      intergranular corrosion      acoustic emission technology      316LN      metallography analysis     
Received:  25 August 2014     
Fund: *Supported by National Science and Technology Major Project No. 2011ZX06004-009.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2014.455     OR     https://www.cjmr.org/EN/Y2015/V29/I4/299

Fig.1  Corrosion rate of metallographic specimen
Fig.2  Intergranular corrosion microstructure of different metallographic structure at the first to the fourth period (a) base material (b) heat affected zone (c) weld zone
Fig.3  Total count of intergranular corrosion process
Fig.4  Total energy of intergranular corrosion process
Fig.5  Amplitude of AE signals at different stages, (a) oxidation (b) passivation (c) oxide film crack initiation (d) oxide film crack propagation (e) fast intergranular corrosion
Fig.6  Different AE signals after wavelet de-noising and reconstruction, (a) oxidation signal (b) passivation signal (c) crack initiation signal (d) crack propagation signal (e) fast intergranular corrosion signal
1 SUN Deyi,SONG Haoliang, XU Junbin, From the perspective of the development trend of world nuclear power plant to the present situation of chinese nuclear power, J. Shanghai Electric. Technol., 4(2), 40(2011)
1 (孙德意, 宋浩亮, 许俊斌, 从世界核电站发展趋势看我国核电发展现状, 上海电气技术, 4(2), 40(2011))
2 Lydell B,OPDE-The international pipe failure data exchange project, Nucl. Eng. Des., 238(3), 2115(2008)
3 T. W. Retting, M. J. Felsen,?Acoustic emission method for monitoring corrosion reactions, Corrosion, 32(4), 121(1976)
4 H. Mazille, R. Rothea, C. Tronel,An acoustic emission technique for monitoring pitting corrosion of austenitic stainless steel, Corros. Sci., 37(9), 1365(1992)
5 M. Fregonese, H. Idrissi, H. Mazille,Monitoring pitting corrosion of AISI 316L austenitic stainless steel by acoustic emission technique: Choice of representative acoustic parameters, J. Mater. Sci., 36(3), 557(2011)
6 M. Fregonese, H. Idrissi,Initiation and propagation steps in pitting corroision of austenitic stainless steels: monitoring by acoustic emission, Corros. Sci., 43(1), 627(2011)
7 H. Shaikh, R. Amirthalingam, T. Anita,Evaluation of stress corrosion cracking phenomenon in an AISI type 316LN stainless steel using acoustic emission technique, Corros. Sci., 49(2), 740(2007)
8 J. Xu, X. Q. Wu, E. H. Han,Acoustic emission response of sensitized 304 stainless steel during intergranular corrosion and stress corrosion cracking, Corros. Sci., 73, 262(2013)
9 WANG Weikui,Study on signal processing of acoustic emission testing for tank bottom, PhD Thesis(Tianjin, Tientsin University, 2011)
9 (王伟魁, 储罐罐底腐蚀声发射检测信号处理关键技术研究(天津, 天津大学, 2011))
10 WANG Weikui,DU Gang, ZENG Zhoumo, Acoustic emission characteristics of corrosion process of 304 nitrogen controlled stainless steel in acidic NaCl solution, J. Chem. Ind. Eng., 61(4), 916(2010)
10 (王伟魁, 杜 刚, 曾周末, 酸性NaCl溶液中304控氮不锈钢腐蚀过程的声发射特征, 化工学报, 61(4), 916(2010))
11 WU Haosong,WANG Haidan, GUO Zhifeng, World nuclear power status, Foreign Nucl. News, 6, 1(2013)
11 (伍浩松, 王海丹, 郭志锋, 世界核电现状, 国外核新闻, 6, 1(2013))
12 C. Garc??a, F. Mart??n, P. Tiedra,Effects of prior cold work and sensitization heat treatment on chloride stress corrosion cracking in type 304 stainless steels, Corros. Sci., 43(8), 1519(2001)
13 LU Yonghao,CHU Wuyang, GAO Kewei, Stress corrosion cracking of 304L stainless steel in water at 288 ℃, Acta Metall. Sin., 40(7), 763(2004)
13 (陆永浩, 褚武扬, 高克玮, 304L不锈钢在高温水中的应力腐蚀裂纹扩展, 金属学报, 40(7), 763(2004))
14 E. R. Hwang,Intergranular corrosion of stainless steels in molten carbonate salt, J. Mater. Sci. Lett., 16, 1387(1997)
15 ZHANG Shenghan,JIA Wei, GUO Yanlei, The research on the intergranular corrosion of 304 stainless steel, Turb. Technol., 53(3), 236(2011)
15 (张胜寒, 贾 伟, 郭彦磊, 304不锈钢晶间腐蚀的研究, 汽轮机技术, 53(3), 236(2011))
16 K. Darowicki, A. Mirakowski,Application of acoustic emission to evaluation of pitting corrosion of austenitic steel, J. Mater. Res., 2(1), 158(2002)
17 C. K. Lee, J. J. Scholey, S. E. Worthington,Acoustic emission from pitting corrison in stressed stainless steel plate, Corros. Eng., 43(1), 54(2008)
18 SHEN Gongtian,GENG Rongsheng, LIU Shifeng, Parameter analysis of acoustic emission signals, Nondestr. Test., 24(2), 72(2002)
18 (沈功田, 耿荣生, 刘时风, 声发射信号的参数分析方法, 无损检测, 24(2), 72(2002))
19 GENG Rongsheng,SHEN Gongtian, LIU Shifeng, Acoustic emission signal processing technique based on waveform analysis, Nondestr. Test., 24(6), 257(2002)
19 (耿荣生, 沈功田, 刘时风, 基于波形分析的声发射信号处理技术, 无损检测, 24(6), 257(2002))
20 ZHANG Ping,SHI Keren, GENG Rongsheng, Application of wavelet transform to acoustic emission testing, Nondestr. Test., 24(10), 436(2002)
20 (张 平, 施克仁, 耿荣生, 小波变换在声发射检测中的应用, 无损检测, 24(10), 436(2002))
21 T. Pilar, M. óscar, L. Manuel,Use of EPR test to study the degree of sensitization in resistance spot welding joints of AISI 304 austenitic stainless steel, Corros. Sci., 53(4), 1563(2011)
22 M. G. Pujar, N. Parvathavarthini, R. K. Dayal,Assessment of intergranular corrosion (IGC) in 316(N) stainless steel using electrochemical noise (EN) technique, Corros. Sci., 51(8), 1707(2009)
23 H. Mzaille, R. Rothea, C. Tronel,An acoustic emission technique for monitoring pitting corrosion of austenitic stainless steel, Corros. Sci., 37(9), 1365(1992)
24 K. Yuma, W. Tomoyo, K. Tomoe,Corrosion mechanisms in reinforced concrete by acoustic emission, Constr. Build. Mater., 48, 1240(2013)
25 V. S. Sinyavskii, V. V. Ulanova, V. D. Kalinin,On the mechanism of intergranular corrosion of aluminum alloys, Prot. Met., 40(5), 481(2004)
[1] YANG Baolei, LIU Tingguang, SU Xianglin, FAN Yu, QIU Liang, LU Yonghao. Effect of Thermal Aging on Mechanical Properties and Intergranular Corrosion Resistance of 316LN[J]. 材料研究学报, 2023, 37(5): 381-390.
[2] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[3] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[4] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[5] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[6] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[7] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[8] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[9] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[10] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
[11] LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. 材料研究学报, 2020, 34(5): 345-352.
[12] WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy[J]. 材料研究学报, 2020, 34(3): 183-190.
[13] YIN Qi,LIU Miaoran,LIU Yuwei,PAN Chen,WANG Zhenyao. Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test[J]. 材料研究学报, 2019, 33(9): 705-712.
[14] SHANG Baihui,MA Yuantai,MENG Meijiang,LI Ying. Characterisation of Passive Film on HRB400 Steel Rebar in Curing Stage of Concrete[J]. 材料研究学报, 2019, 33(9): 659-665.
[15] Zhuman SONG,Rui LI,Miao QIAN,Wenbo SHI,Ke QIAN,Heng MA,Qingyin CHEN,Guangping ZHANG. Optimizing Prestress of Fatigue Property-dominated 8.8-grade Bolts[J]. 材料研究学报, 2019, 33(8): 629-634.
No Suggested Reading articles found!