Please wait a minute...
材料研究学报  2004, Vol. 18 Issue (1): 18-18    
  论文 本期目录 | 过刊浏览 |
含羧基和吡啶基两性离子交换纤维的结构控制
符若文;张春霞;许家瑞
中山大学教育部聚合物复合材料及功能材料重点实验室
Structures control of carboxyl/pyridine-containing amphoteric ion exchange fibers
;;
中山大学教育部聚合物复合材料及功能材料重点实验室
引用本文:

符若文; 张春霞; 许家瑞 . 含羧基和吡啶基两性离子交换纤维的结构控制[J]. 材料研究学报, 2004, 18(1): 18-18.

全文: PDF(2977 KB)  
摘要: 采用X-射线光电子能谱、红外、热失重-红外联用及扫描电镜等手段研究了含羧基和吡啶基两性离子交换纤维的结构,及其对金属离子和氨基酸的吸附分离特性。结果表明,两性离子交换纤维含有羧基和吡啶基,其总交换容量、阳/阴离子交换基团的比率以及纤维的表面形貌可通过选择共接枝单体对种类及其投料比来控制,从而控制两性纤维的吸附选择性。随着共接枝单体吡啶组分含量的增加,阴离子交换容量逐渐上升,阴离子交换基团占总交换基团的比率也随之增加,两性纤维的表面形貌综合了两种单体单组份接枝时的特征。由于吡啶和羧基的协同作用,两性纤维对Cu2+有很大的吸附量,而且当酸碱两种基团含量接近时,协同作用更强。
关键词 有机高分子材料两性离子交换纤维结构控制    
Abstract:The structures of carboxyl/pyridine-containing amphoteric ion exchange fibers were investigated, and the adsorption properties of the obtained fibers for metal ions and amino acids were assessed. Experimental results showed that the amphoteric ion exchange fibers consist of carboxyl and pyridine groups. Their total ion exchange capacity, the rate of cationic and anionic groups, and the morphology can be controlled by changing the type of monomers and the load ratio of acidic and basic monomers. In addition, the competitive adsorbability of the amphoteric fibers can be controlled by the structures of the fibers and adsorption conditions. When the feed content of pyridine monomer increases, the anionic exchange capacity and the ratio of anionic groups to total capacity of the resultant fibers increase. The morphology of the amphoteric fibers is synthesized with both the textures of poly-vinyl-pyridine and poly-acrylic (or methacrylic) acid which were produced in single component grafting system. The amphoteric fibers prepared possess high adsorption capacity for Cu2+due to the coordination action of pyridine and carboxyl groups. When the contents of acidic and basic groups are close to each other, the coordination action for adsorption is enhanced.
Key wordsorganic polymer materials    amphoteric ion exchange fibers    structural control    adsorption
收稿日期: 2003-05-12     
ZTFLH:  TB324  
1 L.Dominguez, K.R.Benak, J.Economy, Polym.Advan.Technol., 12(3-4) , 197(2001)
2 W.P.Lin, Y.L.Hsieh, Industrial & Engineering Chemistry Research, 35(10) , 3817(1996)
3 J.Economy, L.Dominguez, C.L.Mangun, Industrial & Engineering Chemistry Research, 41(25) , 6436(2002)
4 I.V.Lavnikova, V.F.Zheltobryukhov, Russian Journal of Applied Chemistry, 74(12) , 2122(2001)
5 V.S.Soldatov, A.A.Shunkevich, G.I.Sergeev, Synthesis, Reactive Polymer, 7, 159(1988)
6 S.Mosleh, S.M.Gawish, Journal of Applied Polymer Science, 88(10) , 2504(2003)
7 FU Ruowen(符若文), WANG Fei(王菲), DU Xiuying(杜秀英), TANG Liyuan(汤丽鸳), LU Yun(陆耘), ZENG Hanmin(曾汉民), Synthetic Fiber Industry(合成纤维工业), 23(4) , 4(2000)
8 FU Ruowen(符若文), ZHANG Chunxia(张春霞), XU Jiarui(许家瑞), WANG Xuefei(王雪飞), LIN Yuan-sheng(林远声), Journal of Functional Polymers(功能高分子学报), 14(4) , 409(2001)
9 A.W.Trochimczuk, J.Jezierska, Polymer, 41(9) , 3463(2000)
10 G.K.Allaniyazova, Z.A.Tadzhikhodzhaev, A.T.Dzhalilov, Russian Journal of Applied Chemistry, 72(10) , 1824(1999)
11 S.M.Xu, S.F.Zhang, R.W.Lu, J.Z.Yang, C.X.Cui, Journal of Applied Polymer Science, 89(1) , 263(2003)
12 P.Ferruti, M.A.Marchisio, R.Duncan, Macromolecular Rapid Communications, 23(5-6) , 332(2002)
13 P.Ferruti, S.Manzoni, S.C.W.Richardson, R.Duncan, N.G.Pattrick, R.Mendichi, M.Casolaro, Macro-molecules, 33(21) , 7793(2000)
14 J.F.Moulder, W.F.Stickle, P.E.Sobol, K.D.Bomben, Handbook of X-ray Photoelectron Spectroscopy, Edited by Jill Chastain (Minnesota USA, Perkin-Elmer Corporation, 1995)
15 YING Shengkang(应圣康), YU Fengnian(余丰年), Principles of Co-Polymerization (共聚合原理), (Beijing, Chemical Industry Press, 1984)
16 FU Ruowen(符若文) ZHANG Chunxia(张春霞), XU Jiarui(许家瑞), Environmental Technology(环境技术), 21(1) , 22(2003)
17 E.A.Hegazy, El Assy, N.B.Dessouki, A.M.Dessouki, A.M.Shader, J.Radiat.Phys.Chem., 33, 13(1989)
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[5] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[8] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[9] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[10] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[11] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[12] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[13] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.
[14] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10): 752-760.
[15] 张翠歌, 胡良, 卢祖新, 周佳慧. 基于海藻酸自组装胶体粒子的制备及其乳化性能[J]. 材料研究学报, 2021, 35(10): 761-768.