Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (6): 628-634    
  研究论文 本期目录 | 过刊浏览 |
杂质离子对非晶态水合氧化钌电化学超电容性能的影响
武彩霞1; 刘罡2; 方海涛2; 李峰3; 史鹏飞1
1.哈尔滨工业大学化工学院 哈尔滨 150001
2.哈尔滨工业大学材料科学与工程学院 哈尔滨 150001
3.中国科学院金属研究所~沈阳材料科学国家(联合)实验室 沈阳 110016
Effect of impurity ions on electrochemical super-capacitive properties of amorphous hydrated ruthenium oxide
WU Caixia1; LIU Gang2; FANG Haitao2; LI Feng3; SHI Pengfei1
1.School of Chemical Engineering and Technology; Harbin Institute of Technology; Harbin 150001
2.School of Materials Science and Engineering; Harbin Institute of Technology; Harbin 150001
3.Shenyang National Laboratory for Materials Science; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
引用本文:

武彩霞 刘罡 方海涛 李峰 史鹏飞. 杂质离子对非晶态水合氧化钌电化学超电容性能的影响[J]. 材料研究学报, 2009, 23(6): 628-634.
, , , , , , . Effect of impurity ions on electrochemical super-capacitive properties of amorphous hydrated ruthenium oxide[J]. Chin J Mater Res, 2009, 23(6): 628-634.

全文: PDF(1341 KB)  
摘要: 

采用化学沉淀法(在RuCl3溶液中滴加NaOH)制备非晶态水合氧化钌, 用去离子水对非晶态水合氧化钌沉淀充分洗涤, 获得了Na、Cl杂质含量不同、而非晶态结构、水含量和显微相貌都相同的两种氧化钌样品. X射线光电子能谱分析表明, 样品中的Na和Cl杂质分别以水合Na+、水合Cl-的形式存在. 去离子水充分洗涤5次的样品(W_5)与不充分洗涤1次的样品(W_1)相比, 前者的Na+、Cl-杂质含量低. 循环伏安测试表明, W_5的比电容和功率性能都优于W_1. Na+、Cl-杂质不仅降低了氧化钌的比电容, 也降低了氧化钌的功率性能. 在非晶态水合氧化钌的制备过程中杂质含量的控制对获得高超电容性能十分重要.文中还分析了Na+、Cl-杂质对电容性能不利影响的机理.

关键词 无机非金属材料  材料物理与化学 超级电容器 X射线光电子能谱 氧化钌    
Abstract

Amorphous hydrous ruthenium oxide was prepared by a chemical precipitation method. Two ruthenium oxide samples with different contents of Na and Cl impurities were obtained by changing the number of times for washing sediments with distilled water. The experiment results showed that the Na and Cl impurities exist as hydrated Na+ and hydrated Cl, respectively. Sample W 5 (sufficiently
washed 5 times with distilled water during its preparation) has lower content of Na+ and Cl+ impurities in comparison with sample W 1 (insufficiently washed once with distilled water during its preparation). Cyclic voltammetric measurements indicate that the specific capacitance and power performance of W 5 are all higher than that of W 1. Hydrated Na+ and Cl impurities not only decrease the specific capacitance of ruthenium oxide, but degrade the power performance. The reason for the deleterious effect of hydrated Na+ and Climpurities on the super-capacitive properties is discussed.

Key wordsinorganic non-metallic materials     material physics and chemistry    supercapacitor    X–ray photoelectron spectra    ruthenium oxide
收稿日期: 2009-05-27     
ZTFLH: 

O614

 
基金资助:

国家自然科学基金50872026和50602011资助项目.

1 B.E.Conway, Electrochemical Supercapacitors (Norwell, Kluwer Academic Publication, 1999)p.1
2 J.P.Zheng, P.J.Cygan, T.R.Jow, Hydrous ruthenium oxide as an electrode material for electrochemical capacitors, Journal of The Electrochemical Society, 142, 2669(1995)
3 J.P.Zheng, T.R.Jow, A new charge storage mechanism for electrochemical capacitors, Journal of The Electrochemical Society, 142, L6(1995)
4 A.Foelske, O.Barbieri, M.Hahn, R.Kotz, An X-ray photoelectron spectroscopy study of hydrous ruthenium oxide powders with various water contents for supercapacitors, Electrochemical and Solid-State Letters, 9(6), A268(2006)
5 O.Barbieri, M.Hahn, A.Foelske, R.Kotz, Effect of electronic resistance and water content on the performance of RuO2 for supercapacitors, Journal of The Electrochemical Society, 153(11), A2049(2006)
6 Y.Sato, K.Yomogida, T.Nanaumi, K.Kobayakawa, Y.Ohaswa, M.Kawai, Electrochemical behavior of activated-carbon capacitor materials loaded with ruthenium oxide, Electrochemical and Solid-State Letters, 3(3), 113(2000)
7 S.Mitra, K.S.Lokesh, S.Sampath, Exfoliated graphiteruthenium oxide composite electrodes for electrochemical supercapacitors, Journal of Power Sources, 185, 1544(2008)
8 H.Kim, B.N.Popov, Characterization of hydrous ruthenium oxide-carbon nanocomposite supercapacitors prepared by a colloidal method, Journal of Power Sources, 104, 52(2002)
9 C.C.Hu, W.C.Chen, K.H.Chang, How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors, Journal of Electrochemical Society, 151(2), A281(2004)
10 WANG Xiaofeng, GAO Qi, LIANG Ji, Nano ruthenium oxide/carbon nanotubes composite electrode material for electrochemical capacitors, Rare Metal Materials and Engineering, 35(2), 295(2006)
(王晓峰, 高崎, 梁吉, 纳米氧化钌的制备及其碳纳米管复合电极的超电容特性, 稀有金属材料与工程,  35(2), 295(2006)
11 C.C.Hu, Y.H.Huang, Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors, Journal of The Electrochemical Society, 146(7), 2465(1999)
12 C.C.Hu, M.J.Liu, K.H.Chang, Anodic deposition of hydrous ruthenium oxide for supercapacitors, Journal of Power Sources, 163, 1126(2007)
13 J.J.Jow, H.J.Lee, H.R.Chen, M.S.Wu, T.Y.Wei, Anodic, cathodic and cyclic voltammetric deposition of ruthenium oxides from aqueous RuCl3 solutions, Electrochimica Acta, 52, 2625(2007)
14 B.O.Park, C.D.Lokhande, H.S.Park, K.D.Jung, O.S.Joo, Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes-effect of film thickness, Journal of Power Sources, 134, 148(2004)
15 Y.R.Ahn, C.R.Park, S.M.Jo, D.Y.Kim, Enhanced chargedischarge characteristics of RuO2 supercapacitors on heattreated TiO2 naorods, Applied Physics Letters, 90, 122106(2007)
16 Y.R.Ahn, M.Y.Song, S.M.Jo, C.R.Park, D.Y.Kim, Electrochemical capacitors based on electrodeposited ruthenium oxide on nanofibre substrates, Nanotechnology, 17, 2865(2006)

17 K.H.Chang, C.C.Hu, Hydrothermal synthesis of hydrous crystalline RuO2 nanoparticles for supercapacitors, Electrochemical and Solid-State Letters, 7(12), A466(2004)
18 K.H.Chang, C.C.Hu, C.Y.Chou, Textural and capacitive characteristics of hydrothermally derived RuO2 H2O nanocrystallites: independent control of crystal size and water content, Chemistry Materials, 19, 2112(2007)
19 I.H.Kim, K.B.Kim, Ruthenium oxide thin film electrodes for supercapacitors, Electrochemical and Solid-State Letters, 4(5), A62(2001)
20 I.H. Kim, K.B.Kim, Ruthenium oxide thin film electrodes prepared by electrostatic spray deposition and their charge storage mechanism, Journal of Electrochemical Society, 151(1), E7(2004)
21 I.H. Kim, K.B.Kim, Electrochemcial characterization of hydrous ruthenium oxide thin-film electrodes for electrochemical capacitor applications, Journal of Electrochemical Society, 153(2), A383(2006)
22 A.Shchukarev, J.F.Boily, A.R.Felmy, XPS of fast-frozen hematite colloids in NaCl aqueous solutions: I. Evidence for the formation of multiple layers of hydrated sodium and chloride ions incuced by the 001 basal plane, Journal of Physical Chemistry C, 111, 18307(2007)
23 D.W.Wang, F.Li, M.Liu, G.Q.Lu, H.M.Cheng, 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage, Angewandte Chemie-International Edition, 47, 373(2008)

[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.