Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (4): 288-296    DOI: 10.11901/1005.3093.2023.309
  研究论文 本期目录 | 过刊浏览 |
新型双钙钛矿Ca2GdSbO6:Sm3+ 橙红色荧光粉的制备及其发光性能
李婧1, 许英朝1,2(), 范浩爽1, 陆逸1, 李莉1, 张贤玉1
1.厦门理工学院光电与通信工程学院 厦门 361024
2.厦门理工学院 福建省光电技术与器件重点实验室 厦门 361024
Preparation and Luminescence Properties of a Novel Double Perovskite Ca2GdSbO6:Sm3+ Reddish-orange Phosphor
LI Jing1, XU Yingchao1,2(), FAN Haoshuang1, LU Yi1, LI Li1, ZHANG Xianyu1
1.School of Optoelectronics and Communication Engineering, Xiamen University of Technology, Xiamen 361024, China
2.Fujian Provincial Key Laboratory of Optoelectronic Technology and Devices, Xiamen University of Technology, Xiamen 361024, China
引用本文:

李婧, 许英朝, 范浩爽, 陆逸, 李莉, 张贤玉. 新型双钙钛矿Ca2GdSbO6:Sm3+ 橙红色荧光粉的制备及其发光性能[J]. 材料研究学报, 2024, 38(4): 288-296.
Jing LI, Yingchao XU, Haoshuang FAN, Yi LU, Li LI, Xianyu ZHANG. Preparation and Luminescence Properties of a Novel Double Perovskite Ca2GdSbO6:Sm3+ Reddish-orange Phosphor[J]. Chinese Journal of Materials Research, 2024, 38(4): 288-296.

全文: PDF(7705 KB)   HTML
摘要: 

用高温固相法合成一种新型系列橙红色荧光粉Ca2Gd1 - x SbO6:xSm3+ (x = 0、0.01、0.02、0.03、0.04、0.05、0.06),使用X射线衍射(XRD)、扫描电子显微镜(SEM)、光致发光(PL)光谱、高温荧光光谱和荧光衰减寿命等手段表征其物相结构、晶体结构、化学纯度和光学性质,研究了材料的发光性能。结果表明,这种荧光粉基于Sm3+在597 nm处的4G5/26H7/2跃迁,引入Sm3+作为发光中心在407 nm激发下可发出波长为597 nm的橙红光。随着Sm3+离子浓度的提高Ca2GdSbO6:Sm3+荧光粉的发光强度先提高后降低。根据Dexter理论,其浓度猝灭是电偶极-电偶极相互作用主导的,Sm3+离子的最佳掺杂浓度为x = 0.03。最佳掺杂样品的色纯度约为99.3%,色坐标为(0.6146,0.3826)。在453K这种Ca2GdSbO6:Sm3+荧光粉的发射强度只衰减5.56%,表明其具有较高的热稳定性。

关键词 无机非金属材料Ca2GdSbO6:Sm3+高温固相法橙红色荧光粉白光LED高热稳定性    
Abstract

The compound Ca2GdSbO6 with a stable double perovskite structure is one of the high-quality materials used as a phosphor matrix. A new series of reddish-orange phosphors Ca2Gd1 - x SbO6:xSm3+ (x = 0、0.01、0.02、0.03、0.04、0.05、0.06)were synthesized by high-temperature solid-state method. The phase composition, optical properties, crystal structure and chemical purity of the prepared phosphors were characterized via X-ray diffractometer (XRD), scanning electron microscope (SEM), photoluminescence spectroscope (PL), high-temperature fluorescence spectroscope and fluorescence decay lifetime measurement. The incorporation of Sm may endow the synthesized phosphor Ca2Gd1 - x SbO6:xSm3+ with ions Sm3+ as its luminescent centers with the peculiar 4G5/26H7/2 transition of Sm3+ at 597 nm, so that the synthesized phosphor may emit the orange-red light at 597 nm under the excitation of the light at 407 nm. As the concentration of Sm3+ ions increase, the luminous intensity of Ca2GdSbO6:Sm3+ phosphors increases first, and then decreases. According to Dexter's theory, the concentration quenching is dominated by the electric dipole-dipole interaction, and the optimum doping of Sm3+ ions is concentration x = 0.03. The test shows that the color purity of the best-doped sample is about 99.3%, and the color coordinates are (0.6146, 0.3826). The thermal stability was further studied, and it was found that the emission intensity was only attenuated by 5.56% at 453 K. The above results show that the new red-orange light-emitting Ca2GdSbO6:Sm3+ phosphor is promising to be applied in the field of white LED.

Key wordsinorganic non-metallic materials    Ca2GdSbO6:Sm3+    reddish-orange phosphor    high-tem-perature solid-state method    white LED    high thermal stability
收稿日期: 2023-06-25     
ZTFLH:  O482.31  
基金资助:福建省高校产学研联合创新项目(2023H6038);厦门市科技计划重大项目(3502ZCQ20191002);厦门理工学院2023年度研究生科技创新计划项目(YKJCX2023105)
通讯作者: 许英朝,教授,ycxu@xmut.edu.cn,研究方向为光电材料与器件、半导体照明技术
Corresponding author: XU Yingchao, Tel: (0592)6291572, E-mail: ycxu@xmut.edu.cn
作者简介: 李 婧,女,1999年生,硕士生
图1  CGS:xSm3+ (x = 0~0.06)荧光粉的XRD谱和CGS:xSm3+ (x = 0~0.06)荧光粉在2θ = 31.1°~31.5°的放大谱
图2  CGS的晶体结构
图3  未掺NaF的CGS:0.03Sm3+的SEM图像和掺杂NaF的CGS:0.03Sm3+的SEM形貌
图4  CGS:0.03Sm3+的EDS能谱和CGS:0.03Sm3+荧光粉的元素映射图
图5  CGS: 0.03Sm3+荧光粉的激发光谱和发射光谱
图6  CGS:xSm3+ (x = 0.01~0.06)荧光粉的发射谱和主荧光峰发射强度与Sm3+掺杂浓度的关系
图7  Sm3+的交叉弛豫通道
图8  CGS:xSm3+(x = 0.01~0.06)中Sm3+的荧光强度lg(I/x)与掺杂离子浓度lg(x)的关系
图9  在597 nm处用407 nm激发的荧光粉CGS:xSm3+ (x = 0.02~0.05)的Sm3+衰减曲线
图10  CGS:0.03Sm3+荧光粉在不同温度下的荧光发射谱和归一化发射强度
图11  ln(I0/IT-1)与1/KT的线性拟合曲线
图12  CGS:Sm3+位形坐标图
图13  荧光粉CGS:xSm3+ (x = 0.01~0.06)的CIE色坐标
Sm3+ concentration (x)CIE chromaticity coordinates (X, Y)Color purity / %Correlated color temperature / K
0.01(0.6156, 0.3823)99.51305
0.02(0.6167, 0.3826)99.91301
0.03(0.6146, 0.3826)99.31311
0.04(0.6162, 0.3829)99.91305
0.05(0.6151, 0.3824)99.41308
0.06(0.6158, 0.3832)99.91308
表1  荧光粉CGS:xSm3+ (x = 0.01~0.06)的色坐标、相关色温和色纯度
1 Huang X Y. Red phosphor converts white LEDs [J]. Nat. Photonics., 2014, 8(10): 748
2 Phillips J M, Coltrin M E, Crawford M H, et al. Research challenges to ultra-efficient inorganic solid-state lighting [J]. Laser. Photonics. Rev., 2007, 1(4): 307
3 Tian S H, Qiao Z, Sun M S. Luminescence and Energy Transfer of Tunable Emission Phosphor Ca9Al(PO4)7: Tb3+, Sm3+ for White LEDs [J]. Chin. J Lumin., 2019, 40(12): 1469
3 田少华, 乔 峥, 孙明生. 白光LEDs用颜色可调型荧光粉Ca9Al(PO4)7: Tb3+, Sm3+的发光及能量传递 [J]. 发光学报, 2019, 40(12): 1469
4 Jiao M M, Guo N, Lü W, et al. Synthesis, structure and photoluminescence properties of europium-, terbium-, and thulium-doped Ca3Bi(PO4)3 phosphors [J]. Dalton Trans., 2013, 42(34): 12395
5 Lai H Z, Zhu B, Wang J, et al. Preparation and luminescence properties of Eu3+ activated K2CaP2O7 phosphors [J]. Chin. J Lumin., 2018, 39(2): 121
5 赖海珍, 朱 斌, 王 婧 等. Eu3+激活K2CaP2O7荧光粉的制备和发光性质 [J]. 发光学报, 2018, 39(2): 121
6 Li Z H, Hua Y B, Ou G C. Synthesis red-emitting Ca2LaNbO6:xSm3+ phosphors for good color-rendering-index white-LED devices [J]. Optik., 2021, 233: 166595
7 Wu J, Zhang P, Jiang C D, et al. Preparation and Luminescence Properties of Reddish-orange Phosphors Ca3Y2Si3O12: Sm3+ [J]. Chin. J Lumin., 2014, 35(7): 772
7 吴 疆, 张 萍, 蒋春东 等. 橙红色荧光粉Ca3Y2Si3O12:Sm3+的制备及发光特性 [J]. 发光学报, 2014, 35(7): 772
8 Devi S, Dalal M, Dalal J, et al. Near-ultraviolet excited down-conversion Sm3+-doped Ba5Zn4Gd8O21 reddish-orange emitting nano-diametric rods for white LEDs [J]. Ceram. Int., 2019, 45(6): 7397
9 Ke Y E, Zhao B K, Ding K, et al. Orange-red-emitting Sm3+-doped double perovskite CaY0.5Ta0.5O3 phosphor with highly thermal stability for white LED applications [J]. J. Lumin., 2020, 221: 116997
10 Chang J C, Chen C T, Rudysh M, et al. La6Ba4Si6O24F2: Sm3+ novel red-emitting phosphors: Synthesis, photoluminescence and theoretical calculations [J]. J. Lumin., 2019, 206: 417
11 Wang X, Wang W G, Wang Y N, et al. Preparation of BaWO4: Sm3+ red phosphor by microwave method and its luminescent properties [J]. Contemp. Chem. Ind., 2023, 52(3): 584-587+592
11 王 熙, 王伟刚, 王亚楠 等. SrWO4:Sm3+荧光粉的微波合成及发光性能研究 [J]. 当代化工, 2023, 52(3): 584-587+592
12 Zhao F Y, Song Z, Zhao J, et al. Double perovskite Cs2AgInCl6: Cr3+: broadband and near-infrared luminescent materials [J]. Inorg. Chem. Front., 2019, 6(12): 3621
13 Fan H S, Meng X G, Xu Y C, et al. A novel Ca2ScNbO6:Eu3+ phosphor with excellent thermal stability for high color rendering WLED [J]. Opt. Mater., 2023, 140: 113871
14 Chen Z L, Tian Z B, Zhang J, et al. Novel deep‐red‐emitting double‐perovskite type Ca2ScNbO6:Mn 4+ phosphor: Structure, spectral study, and improvement by NaF flux [J]. J. Am. Ceram. Soc., 2022, 105(6): 4230
15 Hua Y B, Ran W G, Yu J S. Strong red emission with excellent thermal stability in double-perovskite type Ba2GdSbO6:Eu3+ phosphors for potential field-emission displays [J]. J. Alloys. Compd., 2020, 835: 155389
16 Hua Y B, Yu J S. Synthesis and luminescence properties of reddish-orange-emitting Ca2GdNbO6:Sm3+ phosphors with good thermal stability for high CRI white applications [J]. Ceram. Int., 2021, 47(5): 6059
17 Fang Z X, Yi S P, Zhou Y X, et al. Preparation and Characterization of Double Perovskite Sr2GdSbO6: Eu3+ Phosphor [J]. Journal of Guangdong University of Technology, 2023, 40(2): 88
17 方志雄, 易双萍, 周一轩 等. 双钙钛矿结构Sr2GdSbO6:Eu3+荧光粉的制备与表征 [J]. 广东工业大学学报, 2023, 40(2): 88
18 Li H H, Gong X H, Chen Y J, et al. Luminescence properties of phosphate phosphors Ba3Gd1-x(PO4)3:xSm3+ [J]. J. Rare. Earths., 2018, 36(5): 456
19 Stephens E M, Metcalf D H, Berry M T, et al. Near-ultraviolet absorption spectra and crystal-field analysis of Gd3+ in Na3[Gd(C4H4O5)3]⋅2NaClO4⋅6H2O [J]. Phys. Rev. B., 1991, 44(18): 9895
pmid: 9998991
20 Wu P P, Meng X G, Xu Y C, et al. Research on new orange-red emitting Sm3+-doped NaSr2Nb5O15 phosphors [J]. J. Lasers., 2022, 43(8): 37
20 吴盼盼, 孟宪国, 许英朝 等. Sm3+掺杂NaSr2Nb5O15的新型橙红色荧光粉 [J]. 激光杂志, 2022, 43(8): 37
21 Yin M, Wen J, Duan C K. Transition selection rules of rare-earth in optical materials [J]. Chin. J Lumin., 2011, 32(7): 643
21 尹 民, 闻 军, 段昌奎. 稀土离子激活发光材料中能级跃迁的选择定则 [J]. 发光学报, 2011, 32(7): 643
22 Dong G Y, Hou C C, Yang Z P, et al. Synthesis and luminescence properties of a novel red Ca0.5Sr0.5MoO4:Sm3+ phospher [J]. J. Opt. Laser., 2014, 25(1): 89
22 董国义, 侯春彩, 杨志平 等. 新型红色荧光粉Ca0.5Sr0.5MoO4:Sm3+的制备及光学性能 [J]. 光电子.激光, 2014, 25(1): 89
23 Yang W B, Xiong F B, Yang Y, et al. Novel orange-red-emitting Sr3Ga2Ge4O14:Sm3+ phosphors with low thermal quenching [J]. Chin. J Lumin., 2022, 43(6): 879
23 杨伟斌, 熊飞兵, 杨 寅 等. 低热猝灭新型Sr3Ga2Ge4O14: Sm3+橙红色荧光粉 [J]. 发光学报, 2022, 43(6): 879
24 Ćirić A, Stojadinović S, Sekulić M, et al. JOES: An application software for Judd-Ofelt analysis from Eu3+ emission spectra [J]. J. Lumin., 2019, 205: 351
25 Ha M G, Jeong J S, Han K R, et al. Characterizations and optical properties of Sm3+-doped Sr2SiO4 phosphors [J]. Ceram. Int., 2012, 38(7): 5521
26 Meng X G, Zhou Q, Xu Y C, et al. Photoluminescence properties of a new orange-red phosphor Sr4Nb2O9:Sm3+ [J]. J. Chin. Soc. Rare Earths, 2023, 41(2): 272
26 孟宪国, 周 琼, 许英朝 等. 新型橙红色荧光粉Sr4Nb2O9:Sm3+的光致发光性能研究 [J]. 中国稀土学报, 2023, 41(2): 272
27 Suhasini T, Suresh Kumar J, Sasikala T, et al. Absorption and fluorescence properties of Sm3+ ions in fluoride containing phosphate glasses [J]. Opt. Mater., 2009, 31(8): 1167
28 Li K, Lian H Z, Deun R V. A novel deep red-emitting phosphor KMgLaTeO6: Mn4+ with high thermal stability and quantum yield for w-LEDs: structure, site occupancy and photoluminescence properties [J]. Dalton. Trans., 2018, 47(8): 2501
29 Hua Y B, Ran W G, Yu J S. Excellent photoluminescence and cathodoluminescence properties in Eu3+-activated Sr2LaNbO6 materials for multifunctional applications [J]. Chem. Eng. J., 2021, 406: 127154
30 Du J N, Xu D H, Gao X D, et al. A novel orange-red emitting phosphor Sr3Lu(PO4)3:Sm3+ for near UV-pumped white light-emitting diodes [J]. J. Mater. Sci. Mater. Electron., 2017, 28(11): 8136
31 Pardha Saradhi P, Varadaraju U V. Photoluminescence studies on Eu2+-activated Li2SrSiO4 a potential orange-yellow phosphor for solid-state lighting [J]. Chem. Mater., 2006, 18(22): 5267
32 Tian M M, Li P L, Wang Z J, et al. Synthesis, color-tunable emission, thermal stability, luminescence and energy transfer of Sm3+ and Eu3+ single-doped M3Tb(BO3)3 (M = Sr and Ba) phosphors [J]. Cryst. Eng. Comm., 2016, 18(36): 6934
33 Wang J X, Xie Y, Guo J L, et al. Abnormal thermal quenching behavior and optical properties of a novel apatite-type NaCa3Bi(PO4)3F:Sm3+ orange-red-emitting phosphor for w-LED applications [J]. Ceram. Int., 2021, 47(20): 28167
34 Bergstrand J, Liu Q, Huang B, et al. On the decay time of upconversion luminescence [J]. Nanoscale, 2019, 11(11): 4959
doi: 10.1039/c8nr10332a pmid: 30839016
35 Wu J X, Li M, Jia H L, et al. Morphology formation mechanism and fluorescence properties of nano-phosphor YPO4:Sm3+ excited by near-ultraviolet light [J]. J. Alloys. Compd., 2020, 821: 153535
36 Cao R P, Lv X Y, Jiao Y M, et al. Ca3La6Si6O24:Eu3+ orange-red-emitting phosphor: Synthesis, structure and luminescence properties [J]. Mater. Res. Bull., 2020, 122: 110651
37 McCamy C S. Correlated color temperature as an explicit function of chromaticity coordinates [J]. Color. Res. Appl., 1992, 17(2): 142
38 Dang P P, Liu D J, Wei Y, et al. Highly efficient cyan-green emission in self-activated Rb3RV2O8(R = Y, Lu) vanadate phosphors for full-spectrum white light-emitting diodes (LEDs) [J]. Inorg. Chem., 2020, 59(9): 6026
[1] 刘锐, 张鼎冬, 张辉, 任文才, 杜金红. 空穴传输层的厚度对石墨烯基有机发光二极管性能的影响[J]. 材料研究学报, 2024, 38(3): 168-176.
[2] 周立臣. 等离子体氟改性TiO2 催化剂的制备及其光催化性能[J]. 材料研究学报, 2024, 38(2): 141-150.
[3] 李博森, 廖忠新, 高大强. BNZ组分对KNN基无铅压电陶瓷结构和性能的影响[J]. 材料研究学报, 2024, 38(1): 51-60.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[6] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[7] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[8] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[9] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[10] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[11] 王胜, 周俏亭, 占慧敏, 陈晶晶. 单晶碳化硅接触中亚表层损伤与破坏机理的原子尺度分析[J]. 材料研究学报, 2023, 37(12): 943-951.
[12] 王月, 付博研, 陈双龙, 邹兵林, 王春杰. 纳米热障涂层材料Ln2(Zr0.7Ce0.3)2O7(Ln=La, Nd, Sm, Gd)的热物性能[J]. 材料研究学报, 2023, 37(11): 855-861.
[13] 孙玉伟, 陈畴, 祁昕, 任楚奇, 汤茜, 滕洪辉, 任百祥. Ag3PO4/MIL-125(Ti) Z型异质结的构建及其光催化还原Cr(VI)的性能[J]. 材料研究学报, 2023, 37(11): 871-880.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.