|
|
空穴传输层的厚度对石墨烯基有机发光二极管性能的影响 |
刘锐1,2, 张鼎冬2, 张辉1( ), 任文才2, 杜金红2( ) |
1.沈阳化工大学材料科学与工程学院 沈阳 110142 2.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 |
|
Effects of the Thickness of the Hole Transport Layer on the Performance of Graphene-based Organic Light-emitting Diodes |
LIU Rui1,2, ZHANG Dingdong2, ZHANG Hui1( ), REN Wencai2, DU Jinhong2( ) |
1.School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China 2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
刘锐, 张鼎冬, 张辉, 任文才, 杜金红. 空穴传输层的厚度对石墨烯基有机发光二极管性能的影响[J]. 材料研究学报, 2024, 38(3): 168-176.
Rui LIU,
Dingdong ZHANG,
Hui ZHANG,
Wencai REN,
Jinhong DU.
Effects of the Thickness of the Hole Transport Layer on the Performance of Graphene-based Organic Light-emitting Diodes[J]. Chinese Journal of Materials Research, 2024, 38(3): 168-176.
1 |
Salehi A, Fu X, Shin D H, et al. Recent advances in oled optical design [J]. Adv. Funct. Mater., 2019, 29(15): 180883
|
2 |
Chen B, Liu B, Zeng J, et al. Efficient bipolar blue aiegens for high-performance nondoped blue oleds and hybrid white oleds [J]. Adv. Funct. Mater., 2018, 28(40): 1803369
doi: 10.1002/adfm.v28.40
|
3 |
Chiu T L, Xianyu H, Ge Z, et al. Transflective device with a transparent organic light-emitting diode and a reflective liquid-crystal device [J]. J. Soc. Inf. Disp., 2009, 17(12): 1009
doi: 10.1889/JSID17.12.1009
|
4 |
Sim B, Moon C K, Kim K H, et al. Quantitative analysis of the efficiency of oleds [J]. ACS Appl. Mater. Interfaces, 2016, 8(48): 33010
doi: 10.1021/acsami.6b10297
|
5 |
Ding B F, Alameh K. High-contrast tandem organic light-emitting devices employing semitransparent intermediate layers of lif/al/c60 [J]. J. Phys. Chem. C, 2012, 116(46): 24690
doi: 10.1021/jp308816w
|
6 |
Fukagawa H, Sasaki T, Tsuzuki T, et al. Long-lived flexible displays employing efficient and stable inverted organic light-emitting diodes [J]. Adv. Mater., 2018, 30(28): 1706768
doi: 10.1002/adma.v30.28
|
7 |
Khan A, Xu W, Wei F X, et al. Highly efficient organic electroluminescent diodes realized by efficient charge balance with optimized electron and hole transport layers [J]. Solid State Commun., 2007, 144(7-8): 343
doi: 10.1016/j.ssc.2007.08.023
|
8 |
Gan Z, Zhu W, Wei B, et al. Electroluminescence characteristics of organic thin film pumped by photoluminescence [J]. J. Optoelectron. Laser, 2009, 20(7): 877
|
9 |
Zhuang J, Li W, Su W, et al. Highly efficient phosphorescent organic light-emitting diodes using a homoleptic iridium(iii) complex as a sky-blue dopant [J]. Org. Electron., 2013, 14(10): 2596
doi: 10.1016/j.orgel.2013.06.029
|
10 |
Zhou L, Kwok C C, Cheng G, et al. Efficient red organic electroluminescent devices by doping platinum(ii) schiff base emitter into two host materials with stepwise energy levels [J]. Opt. Lett., 2013, 38(14): 2373
doi: 10.1364/OL.38.002373
pmid: 23939052
|
11 |
Zhang Z Q, Liu Y P, Dai Y F, et al. High-efficiency phosphorescent white organic light-emitting diodes with stable emission spectrum based on rgb separately monochromatic emission layers [J]. Chin. Phys. Lett., 2014, 31(4): 046801
|
12 |
Zhang Z, Yan P, Yue S, et al. High performance top-emitting and transparent white organic light-emitting diodes based on al/cu/tcta transparent electrodes for active matrix displays and lighting applications [J]. Org. Electron., 2013, 14(6): 1452
doi: 10.1016/j.orgel.2013.03.007
|
13 |
Zhang Z, Xie G, Yue S, et al. Color stable and low driving voltage white organic light-emitting diodes with low efficiency roll-off achieved by selective hole transport buffer layers [J]. Org. Electron., 2012, 13(11): 2296
doi: 10.1016/j.orgel.2012.07.001
|
14 |
Udagawa K, Sasabe H, Cai C, et al. Low-driving-voltage blue phosphorescent organic light-emitting devices with external quantum efficiency of 30% [J]. Adv. Mater., 2014, 26(29): 5062
doi: 10.1002/adma.v26.29
|
15 |
Yang L, Cai F, Yan Y, et al. Conjugated small molecule for efficient hole transport in high-performance p-i-n type perovskite solar cells [J]. Adv. Funct. Mater., 2017, 27(31): 1702613
doi: 10.1002/adfm.v27.31
|
16 |
Wang G, Yin M, Miao Y, et al. Combining intrinsic (blue) and exciplex (green and orange-red) emissions of the same material (oct) in white organic light-emitting diodes to realize high color quality with a cri of 97 [J]. J. Mater. Chem. C, 2022, 10(17): 6654
doi: 10.1039/D2TC00711H
|
17 |
Nakanotani H, Higuchi T, Furukawa T, et al. High-efficiency organic light-emitting diodes with fluorescent emitters [J]. Nat. Commun., 2014, 5: 4016
doi: 10.1038/ncomms5016
pmid: 24874292
|
18 |
Xu T, Zhou J G, Huang C C, et al. Highly simplified tandem organic light-emitting devices incorporating a green phosphorescence ultrathin emitter within a novel interface exciplex for high efficiency [J]. ACS Appl. Mater. Interfaces, 2017, 9(12): 10955
doi: 10.1021/acsami.6b16094
|
19 |
Lee J I. Dependence of light-emitting characteristics of blue phosphorescent organic light-emitting diodes on electron injection and transport materials [J]. ETRI J., 2012, 34(5): 690
doi: 10.4218/etrij.12.0112.0014
|
20 |
Kang J S, Yoon J A, Yoo S I, et al. Luminous efficiency enhancement in blue phosphorescent organic light-emitting diodes with an electron confinement layers [J]. Opt. Mater., 2015, 47: 78
doi: 10.1016/j.optmat.2015.07.003
|
21 |
Hwang J, Kyw Choi H, Moon J, et al. Multilayered graphene anode for blue phosphorescent organic light emitting diodes [J]. Appl. Phys. Lett., 2012, 100(13): 133304
doi: 10.1063/1.3697639
|
22 |
Cui L S, Liu Y, Yuan X D, et al. Bipolar host materials for high efficiency phosphorescent organic light emitting diodes: Tuning the homo/lumo levels without reducing the triplet energy in a linear system [J]. J. Mater. Chem. C, 2013, 1(48): 8177
doi: 10.1039/c3tc31675k
|
23 |
Chang C H, Wu S W, Huang C W, et al. Efficient red, green, blue and white organic light-emitting diodes with same exciplex host [J]. Jpn. J. Appl. Phys., 2016, 55(3S1): 129209
|
24 |
Huang Y, Liu Y, Youssef K, et al. A solution processed flexible nanocomposite substrate with efficient light extraction via periodic wrinkles for white organic light-emitting diodes [J]. Adv. Opt. Mater., 2018, 6(23): 1801015
doi: 10.1002/adom.v6.23
|
25 |
Choi J, Shim Y S, Park C H, et al. Junction-free electrospun ag fiber electrodes for flexible organic light-emitting diodes [J]. Small, 2018, 14(7): 1702567
doi: 10.1002/smll.v14.7
|
26 |
Hippola C, Kaudal R, Manna E, et al. Enhanced light extraction from oleds fabricated on patterned plastic substrates [J]. Adv. Opt. Mater., 2018, 6(4): 1701244
doi: 10.1002/adom.v6.4
|
27 |
Liu S, Liu W, Yu J, et al. Silver/germanium/silver: An effective transparent electrode for flexible organic light-emitting devices [J]. J. Mater. Chem. C, 2014, 2(5): 835
doi: 10.1039/C3TC31927J
|
28 |
Wang Z B, Helander M G, Qiu J, et al. Unlocking the full potential of organic light-emitting diodes on flexible plastic [J]. Nat. Photonics, 2011, 5(12): 753
doi: 10.1038/nphoton.2011.259
|
29 |
Han T H, Lee Y, Choi M R, et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode [J]. Nat. Photonics, 2012, 6(2): 105
doi: 10.1038/nphoton.2011.318
|
30 |
Han T H, Park M H, Kwon S J, et al. Approaching ultimate flexible organic light-emitting diodes using a graphene anode [J]. NPG Asia Mater., 2016, 8: e303
doi: 10.1038/am.2016.108
|
31 |
Wu T L, Yeh C H, Hsiao W T, et al. High-performance organic light-emitting diode with substitutionally boron-doped graphene anode [J]. ACS Appl. Mater. Interfaces, 2017, 9(17): 14998
doi: 10.1021/acsami.7b03597
|
32 |
Zhang Z, Xia L, Liu L, et al. Ultra-smooth and robust graphene-based hybrid anode for high-performance flexible organic light-emitting diodes [J]. J. Mater. Chem. C, 2021, 9(6): 2106
doi: 10.1039/D0TC05213B
|
33 |
Liu J, Li H L, Ma D G, et al. Efficient deep-blue electroluminescent devices based on a novel β-diketone zinc complex [J]. Inorg. Chim. Acta, 2022, 542: 121134
doi: 10.1016/j.ica.2022.121134
|
34 |
Mishra N, Forti S, Fabbri F, et al. Wafer-scale synthesis of graphene on sapphire: Toward fab-compatible graphene [J]. Small, 2019, 15(50): 1904906
doi: 10.1002/smll.v15.50
|
35 |
Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene [J]. Science, 2008, 320(5881): 1308
doi: 10.1126/science.1156965
pmid: 18388259
|
36 |
Chang H, Wang G, Yang A, et al. A transparent, flexible, low-temperature, and solution-processible graphene composite electrode [J]. Adv. Funct. Mater., 2010, 20(17): 2893
doi: 10.1002/adfm.v20:17
|
37 |
Hecht D S, Hu L, Irvin G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures [J]. Adv. Mater., 2011, 23(13): 1482
doi: 10.1002/adma.v23.13
|
38 |
Jia S, Sun H D, Du J H, et al. Graphene oxide/graphene vertical heterostructure electrodes for highly efficient and flexible organic light emitting diodes [J]. Nanoscale, 2016, 8(20): 10714
doi: 10.1039/c6nr01649a
pmid: 27153523
|
39 |
Weng Z, Dixon S C, Lee L Y, et al. Wafer‐scale graphene anodes replace indium tin oxide in organic light‐emitting diodes [J]. Adv. Opt. Mater., 2021, 10(3): 2101675
doi: 10.1002/adom.v10.3
|
40 |
Sharif P, Alemdar E, Ozturk S, et al. Rational molecular design enables efficient blue tadf-oleds with flexible graphene substrate [J]. Adv. Funct. Mater., 2022, 32(47): 2207324
doi: 10.1002/adfm.v32.47
|
41 |
Zhang Z K, Du J H, Zhang D D, et al. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes [J]. Nat. Commun., 2017, 8: 14560
doi: 10.1038/ncomms14560
pmid: 28233778
|
42 |
Strieth K F, James M J, Teders M, et al. Energy transfer catalysis mediated by visible light: Principles, applications, directions [J]. Chem. Soc. Rev., 2018, 47(19): 7190
doi: 10.1039/c8cs00054a
pmid: 30088504
|
43 |
Chen Y, Zhao F, Zhao Y, et al. Ultra-simple hybrid white organic light-emitting diodes with high efficiency and cri trade-off: Fabrication and emission-mechanism analysis [J]. Org. Electron., 2012, 13(12): 2807
doi: 10.1016/j.orgel.2012.08.031
|
44 |
Zhu L, Xu K, Wang Y, et al. High efficiency yellow fluorescent organic light emitting diodes based on m-mtdata/bphen exciplex [J]. Front. Optoelectron., 2015, 8(4): 439
doi: 10.1007/s12200-015-0492-0
|
45 |
Hong K, Lee J L. Review paper: Recent developments in light extraction technologies of organic light emitting diodes [J]. Electron. Mater. Lett., 2011, 7(2): 77
doi: 10.1007/s13391-011-0601-1
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|