Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (3): 168-176    DOI: 10.11901/1005.3093.2023.198
  研究论文 本期目录 | 过刊浏览 |
空穴传输层的厚度对石墨烯基有机发光二极管性能的影响
刘锐1,2, 张鼎冬2, 张辉1(), 任文才2, 杜金红2()
1.沈阳化工大学材料科学与工程学院 沈阳 110142
2.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
Effects of the Thickness of the Hole Transport Layer on the Performance of Graphene-based Organic Light-emitting Diodes
LIU Rui1,2, ZHANG Dingdong2, ZHANG Hui1(), REN Wencai2, DU Jinhong2()
1.School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

刘锐, 张鼎冬, 张辉, 任文才, 杜金红. 空穴传输层的厚度对石墨烯基有机发光二极管性能的影响[J]. 材料研究学报, 2024, 38(3): 168-176.
Rui LIU, Dingdong ZHANG, Hui ZHANG, Wencai REN, Jinhong DU. Effects of the Thickness of the Hole Transport Layer on the Performance of Graphene-based Organic Light-emitting Diodes[J]. Chinese Journal of Materials Research, 2024, 38(3): 168-176.

全文: PDF(6934 KB)   HTML
摘要: 

以石墨烯作为透明阳极、以1,1-双[4-[N,N-二(对甲苯基)氨基]苯基]环己烷(TAPC)作为空穴传输层,用蒸镀法构建柔性绿光OLED器件,研究了蒸镀速率对TAPC层形貌的影响和TAPC层的厚度对器件性能的影响。先控制蒸镀速率分别为0.05、0.1和0.15 nm·s-1制备了厚度为60 nm的TAPC膜层,蒸镀速率为0.05 nm·s-1的TAPC膜层其表面粗糙度(2.52 nm)最低。随后在保持其他材料层厚度不变的情况下,以0.05 nm·s-1的蒸镀速率分别制备了厚度为50、60、70和80 nm的TAPC膜层并构建了OLED器件。对比研究发现,TAPC层厚度为70 nm的器件性能最佳,其最大亮度达到34350 cd·m-2,最高外量子效率(EQE)达到21.02%。该器件还具有优异的柔韧性,是色坐标位于(0.3140,0.6386)的标准绿光OLED器件。

关键词 无机非金属材料有机发光二极管空穴传输层石墨烯柔性光电子    
Abstract

Thickness modulation is an important way to improve the performance of organic light-emitting diode (OLED) device. In this paper, flexible green OLED devices were constructed by vacuum thermal evaporation, using graphene as the transparent anode and 1,1-bis[4-[N,N-bis(p-tolyl)amino]phenyl]cyclohexane (TAPC) as the hole transport layer. The effects of evaporation speed on the morphology of the TAPC layer and the thickness of TAPC layer on the device performance were studied. First, 60 nm-thick TAPC layers were fabricated by controlling the evaporation speed at 0.05, 0.1 and 0.15 nm·s-1. It was found that the TAPC film had the lowest surface roughness of ~2.52 nm when the evaporation speed was 0.05 nm·s-1. Subsequently, TAPC layers with thicknesses of 50, 60, 70 and 80 nm were fabricated at a evaporation speed of 0.05 nm·s-1 and OLED devices were fabricated while keeping the thickness of other functional layers unchanged. A comparative study showed that the device with 70 nm-thick TAPC layer achieved the highest performance with a maximum brightness of 34350 cd·m-2 and a maximum external quantum efficiency (EQE) of 21.02%. Meanwhile, the device has excellent flexibility and the CIE chromaticity coordinate is located at (0.3140, 0.6386), which is very close to the chromaticity coordinate of standard green light. This study is significant for promoting the application of flexible graphene-based OLEDs in the fields of display and lighting and for the development of wearable optoelectronic devices.

Key wordsinorganic non-metallic materials    organic light-emitting diodes    hole transport layers    graphene    flexible optoelectronics
收稿日期: 2023-03-23     
ZTFLH:  TN383.1  
基金资助:国家自然科学基金(52002375);国家自然科学基金(52272051);中国博士后科学基金会(2020M670812);中国博士后科学基金会(2020TQ0328);辽宁省科技厅博士启动基金(2021-BS-003)
通讯作者: 张 辉,副教授,krista9150@sina.com,研究方向为碳纳米复合材料的制备及应用;
杜金红,研究员,jhdu@imr.ac.cn,研究方向为石墨烯等二维材料光电器件应用
Corresponding author: ZHANG Hui, Tel:13998243835, E-mail: krista9150@sina.com;DU Jinhong, Tel:(024)83970720, E-mail: jhdu@imr.ac.cn
作者简介: 刘 锐,男,1997年生,硕士生
图1  OLED器件制备使用的有机材料
图2  G-OLED器件的结构和能级图
图3  不同蒸镀速率制备的60 nm厚TAPC层的表面形貌
图4  OLED器件的J-V曲线、L-V曲线、CE-L曲线、PE-L曲线、EQE-L性能、电致发光的光谱图、CE最大值、PE最大值和EQE最大值
PerformanceABCD
Lmax / cd·m-25901142603435017650
CDmax / mA·cm-217.5729.9259.9837.22
CEmax / cd·A-133.5848.1978.1050.56
PEmax / lm·W-112.4318.8060.0421.93
EQEmax / %9.2712.9121.0213.67
λ / nm530528525528
CIE (x, y)0.3802,0.3486,0.3140,0.3611,
0.59000.61690.63860.6074
表1  G-OLED器件的性能
图5  不同TAPC厚度的OLED器件的形貌
图6  柔性绿光G-OLED器件的性能
1 Salehi A, Fu X, Shin D H, et al. Recent advances in oled optical design [J]. Adv. Funct. Mater., 2019, 29(15): 180883
2 Chen B, Liu B, Zeng J, et al. Efficient bipolar blue aiegens for high-performance nondoped blue oleds and hybrid white oleds [J]. Adv. Funct. Mater., 2018, 28(40): 1803369
doi: 10.1002/adfm.v28.40
3 Chiu T L, Xianyu H, Ge Z, et al. Transflective device with a transparent organic light-emitting diode and a reflective liquid-crystal device [J]. J. Soc. Inf. Disp., 2009, 17(12): 1009
doi: 10.1889/JSID17.12.1009
4 Sim B, Moon C K, Kim K H, et al. Quantitative analysis of the efficiency of oleds [J]. ACS Appl. Mater. Interfaces, 2016, 8(48): 33010
doi: 10.1021/acsami.6b10297
5 Ding B F, Alameh K. High-contrast tandem organic light-emitting devices employing semitransparent intermediate layers of lif/al/c60 [J]. J. Phys. Chem. C, 2012, 116(46): 24690
doi: 10.1021/jp308816w
6 Fukagawa H, Sasaki T, Tsuzuki T, et al. Long-lived flexible displays employing efficient and stable inverted organic light-emitting diodes [J]. Adv. Mater., 2018, 30(28): 1706768
doi: 10.1002/adma.v30.28
7 Khan A, Xu W, Wei F X, et al. Highly efficient organic electroluminescent diodes realized by efficient charge balance with optimized electron and hole transport layers [J]. Solid State Commun., 2007, 144(7-8): 343
doi: 10.1016/j.ssc.2007.08.023
8 Gan Z, Zhu W, Wei B, et al. Electroluminescence characteristics of organic thin film pumped by photoluminescence [J]. J. Optoelectron. Laser, 2009, 20(7): 877
9 Zhuang J, Li W, Su W, et al. Highly efficient phosphorescent organic light-emitting diodes using a homoleptic iridium(iii) complex as a sky-blue dopant [J]. Org. Electron., 2013, 14(10): 2596
doi: 10.1016/j.orgel.2013.06.029
10 Zhou L, Kwok C C, Cheng G, et al. Efficient red organic electroluminescent devices by doping platinum(ii) schiff base emitter into two host materials with stepwise energy levels [J]. Opt. Lett., 2013, 38(14): 2373
doi: 10.1364/OL.38.002373 pmid: 23939052
11 Zhang Z Q, Liu Y P, Dai Y F, et al. High-efficiency phosphorescent white organic light-emitting diodes with stable emission spectrum based on rgb separately monochromatic emission layers [J]. Chin. Phys. Lett., 2014, 31(4): 046801
12 Zhang Z, Yan P, Yue S, et al. High performance top-emitting and transparent white organic light-emitting diodes based on al/cu/tcta transparent electrodes for active matrix displays and lighting applications [J]. Org. Electron., 2013, 14(6): 1452
doi: 10.1016/j.orgel.2013.03.007
13 Zhang Z, Xie G, Yue S, et al. Color stable and low driving voltage white organic light-emitting diodes with low efficiency roll-off achieved by selective hole transport buffer layers [J]. Org. Electron., 2012, 13(11): 2296
doi: 10.1016/j.orgel.2012.07.001
14 Udagawa K, Sasabe H, Cai C, et al. Low-driving-voltage blue phosphorescent organic light-emitting devices with external quantum efficiency of 30% [J]. Adv. Mater., 2014, 26(29): 5062
doi: 10.1002/adma.v26.29
15 Yang L, Cai F, Yan Y, et al. Conjugated small molecule for efficient hole transport in high-performance p-i-n type perovskite solar cells [J]. Adv. Funct. Mater., 2017, 27(31): 1702613
doi: 10.1002/adfm.v27.31
16 Wang G, Yin M, Miao Y, et al. Combining intrinsic (blue) and exciplex (green and orange-red) emissions of the same material (oct) in white organic light-emitting diodes to realize high color quality with a cri of 97 [J]. J. Mater. Chem. C, 2022, 10(17): 6654
doi: 10.1039/D2TC00711H
17 Nakanotani H, Higuchi T, Furukawa T, et al. High-efficiency organic light-emitting diodes with fluorescent emitters [J]. Nat. Commun., 2014, 5: 4016
doi: 10.1038/ncomms5016 pmid: 24874292
18 Xu T, Zhou J G, Huang C C, et al. Highly simplified tandem organic light-emitting devices incorporating a green phosphorescence ultrathin emitter within a novel interface exciplex for high efficiency [J]. ACS Appl. Mater. Interfaces, 2017, 9(12): 10955
doi: 10.1021/acsami.6b16094
19 Lee J I. Dependence of light-emitting characteristics of blue phosphorescent organic light-emitting diodes on electron injection and transport materials [J]. ETRI J., 2012, 34(5): 690
doi: 10.4218/etrij.12.0112.0014
20 Kang J S, Yoon J A, Yoo S I, et al. Luminous efficiency enhancement in blue phosphorescent organic light-emitting diodes with an electron confinement layers [J]. Opt. Mater., 2015, 47: 78
doi: 10.1016/j.optmat.2015.07.003
21 Hwang J, Kyw Choi H, Moon J, et al. Multilayered graphene anode for blue phosphorescent organic light emitting diodes [J]. Appl. Phys. Lett., 2012, 100(13): 133304
doi: 10.1063/1.3697639
22 Cui L S, Liu Y, Yuan X D, et al. Bipolar host materials for high efficiency phosphorescent organic light emitting diodes: Tuning the homo/lumo levels without reducing the triplet energy in a linear system [J]. J. Mater. Chem. C, 2013, 1(48): 8177
doi: 10.1039/c3tc31675k
23 Chang C H, Wu S W, Huang C W, et al. Efficient red, green, blue and white organic light-emitting diodes with same exciplex host [J]. Jpn. J. Appl. Phys., 2016, 55(3S1): 129209
24 Huang Y, Liu Y, Youssef K, et al. A solution processed flexible nanocomposite substrate with efficient light extraction via periodic wrinkles for white organic light-emitting diodes [J]. Adv. Opt. Mater., 2018, 6(23): 1801015
doi: 10.1002/adom.v6.23
25 Choi J, Shim Y S, Park C H, et al. Junction-free electrospun ag fiber electrodes for flexible organic light-emitting diodes [J]. Small, 2018, 14(7): 1702567
doi: 10.1002/smll.v14.7
26 Hippola C, Kaudal R, Manna E, et al. Enhanced light extraction from oleds fabricated on patterned plastic substrates [J]. Adv. Opt. Mater., 2018, 6(4): 1701244
doi: 10.1002/adom.v6.4
27 Liu S, Liu W, Yu J, et al. Silver/germanium/silver: An effective transparent electrode for flexible organic light-emitting devices [J]. J. Mater. Chem. C, 2014, 2(5): 835
doi: 10.1039/C3TC31927J
28 Wang Z B, Helander M G, Qiu J, et al. Unlocking the full potential of organic light-emitting diodes on flexible plastic [J]. Nat. Photonics, 2011, 5(12): 753
doi: 10.1038/nphoton.2011.259
29 Han T H, Lee Y, Choi M R, et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode [J]. Nat. Photonics, 2012, 6(2): 105
doi: 10.1038/nphoton.2011.318
30 Han T H, Park M H, Kwon S J, et al. Approaching ultimate flexible organic light-emitting diodes using a graphene anode [J]. NPG Asia Mater., 2016, 8: e303
doi: 10.1038/am.2016.108
31 Wu T L, Yeh C H, Hsiao W T, et al. High-performance organic light-emitting diode with substitutionally boron-doped graphene anode [J]. ACS Appl. Mater. Interfaces, 2017, 9(17): 14998
doi: 10.1021/acsami.7b03597
32 Zhang Z, Xia L, Liu L, et al. Ultra-smooth and robust graphene-based hybrid anode for high-performance flexible organic light-emitting diodes [J]. J. Mater. Chem. C, 2021, 9(6): 2106
doi: 10.1039/D0TC05213B
33 Liu J, Li H L, Ma D G, et al. Efficient deep-blue electroluminescent devices based on a novel β-diketone zinc complex [J]. Inorg. Chim. Acta, 2022, 542: 121134
doi: 10.1016/j.ica.2022.121134
34 Mishra N, Forti S, Fabbri F, et al. Wafer-scale synthesis of graphene on sapphire: Toward fab-compatible graphene [J]. Small, 2019, 15(50): 1904906
doi: 10.1002/smll.v15.50
35 Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene [J]. Science, 2008, 320(5881): 1308
doi: 10.1126/science.1156965 pmid: 18388259
36 Chang H, Wang G, Yang A, et al. A transparent, flexible, low-temperature, and solution-processible graphene composite electrode [J]. Adv. Funct. Mater., 2010, 20(17): 2893
doi: 10.1002/adfm.v20:17
37 Hecht D S, Hu L, Irvin G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures [J]. Adv. Mater., 2011, 23(13): 1482
doi: 10.1002/adma.v23.13
38 Jia S, Sun H D, Du J H, et al. Graphene oxide/graphene vertical heterostructure electrodes for highly efficient and flexible organic light emitting diodes [J]. Nanoscale, 2016, 8(20): 10714
doi: 10.1039/c6nr01649a pmid: 27153523
39 Weng Z, Dixon S C, Lee L Y, et al. Wafer‐scale graphene anodes replace indium tin oxide in organic light‐emitting diodes [J]. Adv. Opt. Mater., 2021, 10(3): 2101675
doi: 10.1002/adom.v10.3
40 Sharif P, Alemdar E, Ozturk S, et al. Rational molecular design enables efficient blue tadf-oleds with flexible graphene substrate [J]. Adv. Funct. Mater., 2022, 32(47): 2207324
doi: 10.1002/adfm.v32.47
41 Zhang Z K, Du J H, Zhang D D, et al. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes [J]. Nat. Commun., 2017, 8: 14560
doi: 10.1038/ncomms14560 pmid: 28233778
42 Strieth K F, James M J, Teders M, et al. Energy transfer catalysis mediated by visible light: Principles, applications, directions [J]. Chem. Soc. Rev., 2018, 47(19): 7190
doi: 10.1039/c8cs00054a pmid: 30088504
43 Chen Y, Zhao F, Zhao Y, et al. Ultra-simple hybrid white organic light-emitting diodes with high efficiency and cri trade-off: Fabrication and emission-mechanism analysis [J]. Org. Electron., 2012, 13(12): 2807
doi: 10.1016/j.orgel.2012.08.031
44 Zhu L, Xu K, Wang Y, et al. High efficiency yellow fluorescent organic light emitting diodes based on m-mtdata/bphen exciplex [J]. Front. Optoelectron., 2015, 8(4): 439
doi: 10.1007/s12200-015-0492-0
45 Hong K, Lee J L. Review paper: Recent developments in light extraction technologies of organic light emitting diodes [J]. Electron. Mater. Lett., 2011, 7(2): 77
doi: 10.1007/s13391-011-0601-1
[1] 周立臣. 等离子体氟改性TiO2 催化剂的制备及其光催化性能[J]. 材料研究学报, 2024, 38(2): 141-150.
[2] 徐东卫, 王瑞琪, 陈平. 石墨烯基吸波复合材料研究进展[J]. 材料研究学报, 2024, 38(1): 1-13.
[3] 李博森, 廖忠新, 高大强. BNZ组分对KNN基无铅压电陶瓷结构和性能的影响[J]. 材料研究学报, 2024, 38(1): 51-60.
[4] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[7] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[8] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[9] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[10] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[11] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[12] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[13] 王胜, 周俏亭, 占慧敏, 陈晶晶. 单晶碳化硅接触中亚表层损伤与破坏机理的原子尺度分析[J]. 材料研究学报, 2023, 37(12): 943-951.
[14] 王月, 付博研, 陈双龙, 邹兵林, 王春杰. 纳米热障涂层材料Ln2(Zr0.7Ce0.3)2O7(Ln=La, Nd, Sm, Gd)的热物性能[J]. 材料研究学报, 2023, 37(11): 855-861.
[15] 孙玉伟, 陈畴, 祁昕, 任楚奇, 汤茜, 滕洪辉, 任百祥. Ag3PO4/MIL-125(Ti) Z型异质结的构建及其光催化还原Cr(VI)的性能[J]. 材料研究学报, 2023, 37(11): 871-880.