Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (1): 71-80    DOI: 10.11901/1005.3093.2023.094
  研究论文 本期目录 | 过刊浏览 |
超疏水苯并噁嗪-ZnO改性海绵的制备及其油水分离性能
李宇轩1, 杜永刚1, 苏俊铭1, 王智2(), 朱永飞1()
1 南宁师范大学化学与材料学院 广西天然高分子化学与物理重点实验室 南宁 530001
2 中北大学材料科学与工程学院 太原  030051
Superhydrophobic Sponge Coated with Polybenzoxazine and ZnO for Oil-Water Separation
LI Yuxuan1, DU Yonggang1, SU Junming1, WANG Zhi2(), ZHU Yongfei1()
1 Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
2 School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
引用本文:

李宇轩, 杜永刚, 苏俊铭, 王智, 朱永飞. 超疏水苯并噁嗪-ZnO改性海绵的制备及其油水分离性能[J]. 材料研究学报, 2024, 38(1): 71-80.
Yuxuan LI, Yonggang DU, Junming SU, Zhi WANG, Yongfei ZHU. Superhydrophobic Sponge Coated with Polybenzoxazine and ZnO for Oil-Water Separation[J]. Chinese Journal of Materials Research, 2024, 38(1): 71-80.

全文: PDF(8987 KB)   HTML
摘要: 

先用腰果酚和十二胺制备苯并噁嗪(Cd-D),然后用水热法和浸涂法依次将ZnO微/纳米结构和Cd-D负载在三聚氰胺甲醛海绵(MS)表面,制备出超疏水MS(PCd-D/ZnO/MS)。当水热反应中Zn(NO3)2浓度为0.03 mol/L、Zn(NO3)2与六次甲基四胺的摩尔比为1∶2、反应时间和温度分别为4 h和95℃时,制备出的改性MS水接触角(WCA)可达153.6°。PCd-D/ZnO/MS对有机溶剂和油类具有较高的吸附量(48.19~113.44 g/g)和极高的吸附速率。同时,聚苯并噁嗪、ZnO与MS之间产生的多种相互作用(氢键、配位键和化学键等)使表面改性结构牢固地粘附在MS骨架上,从而使PCd-D/ZnO/MS具有优异的重复使用性能。PCd-D/ZnO/MS循环使用30次后仍保持超疏水性和96.6%的吸附量,重复使用100次后其WCA可达147.3°、吸油量保持为92.6%。PCd-D/ZnO/MS在真空泵的辅助下可连续用于油水分离,分离效率高于90%。PCd-D/ZnO/MS还具有优异的耐酸、碱、盐性能,在强碱溶液中浸泡30 d后仍保持超疏水性。

关键词 有机高分子材料苯并噁嗪ZnO超疏水海绵油水分离    
Abstract

The discharge of industrial and daily life waste water, as well as the oil leakage not only cause serious environmental disaster but also the waste of resources. Superhydrophobic sponge is a kind of ideal materials of separating and recovering oil/water mixture. Herein, benzoxazine based on renewable cardanol and dodecamine (Cd-D) was synthesized, then ZnO micro-/nano-structure and Cd-D were successively coated on the surface of melamine sponge (MS) by a simple hydrothermal process and dip-coating method to prepare superhydrophobic MS (PCd-D/ZnO/MS). A water contact angle (WCA) of 153.6° could be obtained when the concentration of Zn(NO3)2 was 0.03 mol/L and the mole ratio of Zn(NO3)2 and HMTA was 1:2 prepared at 95oC for 4 h. PCd-D/ZnO/MS exhibited a high oil absorption capacity (48.19~113.44 g/g) for organic solvents and oils with a rapid absorption rate. In addition, polybenzoxazine and ZnO (or MS) could form multiple interactions (including hydrogen bond, coordination bond, chemical bond, etc.), which made the coating be firmly adhered to the MS skeleton and thus endowed PCd-D/ZnO/MS excellent reusability. PCd-D/ZnO/MS could maintain superhydrophobicity and 96.6% of initial adsorption capacity after 30 cycles, the WCA of the modified MS could reach 147.3° with an absorption retention of 92.6% after 100 cycles. With the help of vacuum pump, PCd-D/ZnO/MS could be used for continuous oil/water separation with a separation efficiency of above 90%. Moreover, PCd-D/ZnO/MS showed excellent resistance to strong acid, alkali and salt, and then still displayed superhydrophobicity even being immersed in NaOH solution for 30 days. In summary, PCd-D/ZnO/MS not only possessed a simple, safe and economical preparation processe but also exhibited excellent oil-water separation ability, reusability and resistance to acid, alkali and salt, which made PCd-D/ZnO/MS a promising oil-water separation material.

Key wordsorganic polymer materials    benzoxazine    ZnO    superhydrophobic sponge    oil-water separation
收稿日期: 2023-01-11     
ZTFLH:  TQ323  
基金资助:国家自然科学基金(51773185);国家自然科学基金(U1810118)
通讯作者: 朱永飞,教授,yonfez@163.com,研究方向为苯并噁嗪的制备及应用;
王智,教授,hugh-wang@nuc.edu.cn,研究方向为苯并噁嗪树脂的合成以及改性
Corresponding author: ZHU Yongfei, Tel: (0771)3908065, E-mail: yonfez@163.com;
WANG Zhi, Tel: (0771)3908065, E-mail: hugh-wang@nuc.edu.cn
作者简介: 李宇轩,男,1999年,硕士生
图1  Cd-D的合成路线及其固化物(PCd-D)结构
图2  PCd-D/ZnO/MS的制备流程
图3  Zn(NO3)2、Zn(NO3)2与HMTA摩尔比、反应时间以及反应温度对PCd-D/ZnO/MS水接触角(WCA)的影响
图4  原始MS、ZnO/MS和PCd-D/ZnO/MS的SEM照片
图5  PCd-D/ZnO/MS的 XRD谱
图6  原始MS的XPS全图谱、C1s谱图、O1s谱图和、N 1s谱
图7  PCd-D/ZnO/MS的XPS全谱图、C1s谱图、O1s谱图和N 1s谱
SamplesContent of C / %Content of N / %
C-C/C-HC-ON=C-NC=ON-CN=C
MS14.9816.3751.0217.6340.4559.55
PCd-D/ZnO/MS37.1834.4410.9417.4452.2847.72
表1  MS与PCd-D/ZnO/MS的C1s和N1s解析数据
图8  MS和PCd-D/ZnO/MS在水中的照片、水和大豆油滴在MS和PCd-D/ZnO/MS的表面状态
图9  PCd-D/ZnO/MS对不同有机溶剂和油类的吸附能力
图10  PCd-D/ZnO/MS分离甲苯/水混合物和二氯甲烷/水混合物以及PCd-D/ZnO/MS对大豆油/水混合物的连续分离
图11  PCd-D/ZnO/MS循环使用不同次数后的吸油量和水接触角
图12  PCd-D/ZnO/MS在HCl和NaOH溶液中浸泡不同时间后的WCA
1 Zheng K, Li W X, Zhou S Q, et al. Facile one-step fabrication of superhydrophobic melamine sponges by poly(phenol-amine) modification method for effective oil-water separation [J]. J. Hazard. Mater., 2022, 429: 128348
doi: 10.1016/j.jhazmat.2022.128348
2 Sun H D, Liu Z M, Liu K Y, et al. Lignin-based superhydrophobic melamine resin sponges and their application in oil/water separation [J]. Ind. Crop. Prod., 2021, 170: 113798
doi: 10.1016/j.indcrop.2021.113798
3 Yu T L, Halouane F, Mathias D, et al. Preparation of magnetic, superhydrophobic/superoleophilic polyurethane sponge: separation of oil/water mixture and demulsification [J]. Chem. Eng. J., 2020, 384: 123339
doi: 10.1016/j.cej.2019.123339
4 Guo C C, Zhang Y L, Wang Y, et al. Fe3O4/PDMS modified collagen sponge and its oil-water separation performance [J]. Acta Mater. Compos. Sin., 2022, 39(10): 4652
4 郭晨晨, 张云龙, 王 瑜 等.Fe3O4/聚二甲基硅氧烷改性胶原海绵及其油水分离性能 [J]. 复合材料学报, 2022, 39(10): 4652
5 Shang Q Q, Cheng J W, Liu C G, et al. Fabrication of sustainable and durable bio-polybenzoxazine based superhydrophobic cotton fabric for efficient oil/water separation [J]. Prog. Org. Coat., 2021, 158: 106343
6 Zhang H L, Zhao G Q, Ou J F, et al. Superhydrophobic cotton fabric based on polydopamine via simple one-pot immersion for oil water separation [J]. Chin. J. Mater. Res., 2022, 36(2): 114
doi: 10.11901/1005.3093.2021.103
6 张红亮, 赵国庆, 欧军飞 等.基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能 [J]. 材料研究学报, 2022, 36(2): 114
doi: 10.11901/1005.3093.2021.103
7 Yin X L, Yu S R, Wang L Y.Dual-functional underliquid superhydrophobic and superoleophobic stainless steel mesh decorated with Ni3S2 nanorods for continuous oil/water separation [J]. Surf. Coat. Technol., 2022, 434: 128177
doi: 10.1016/j.surfcoat.2022.128177
8 Zhou B M, Bashir B H, Liu Y, et al. Facile construction and fabrication of a superhydrophobic copper mesh for ultraefficient oil/water separation [J]. Ind. Eng. Chem. Res., 2021, 60: 8139
doi: 10.1021/acs.iecr.1c01046
9 Wang F, Ma R R, Tian Y Q.Fabrication of superhydrophobic/oleophilic starch cryogel via a simple sol-gel immersion process for removing oil from water [J]. Ind. Crop. Prod., 2022, 184: 115010
doi: 10.1016/j.indcrop.2022.115010
10 Navarathna C M, Dewage N B, Keeton C.Biochar adsorbents with enhanced hydrophobicity for oil spill removal [J]. ACS Appl. Mater. Interfaces, 2020, 12(8): 9248
doi: 10.1021/acsami.9b20924
11 Yang F S, Ren Y Z, Zhang Z Y, et al. Preparation and properties of superhydrophobic-superoleophilic sand for oil-water separation [J]. Surf. Technol., 2021, 50(11): 165
11 杨福生, 任永忠, 张振宇 等.用于油水分离的超疏水-超亲油沙子的制备及其性能 [J]. 表面技术, 2021, 50(11): 165
12 Peng Y Y, Liu Y, Dai J Y, et al. A sustainable strategy for remediation of oily sewage: Clean and safe [J]. Sep. Purif. Technol., 2020, 240: 116592
doi: 10.1016/j.seppur.2020.116592
13 Yao H J, Lu X, Chen S W, et al. A robust polybenzoxazine/SiO2 fabric with superhydrophobicity for high-flux oil/water separation [J]. Ind. Eng. Chem. Res., 2020, 59: 7787
doi: 10.1021/acs.iecr.9b06003
14 Sun R Y, Yu N K, Zhao J, et al. Chemically stable superhydrophobic polyurethane sponge coated with ZnO/epoxy resin coating for effective oil/water separation [J]. Colloid. Surf., 2021, 611A: 125850
15 Wang T L, Lu Z C, Wang X Q, et al. A compound of ZnO/PDMS with photocatalytic, self-cleaning and antibacterial properties prepared via two-step method [J]. Appl. Surf. Sci., 2021, 550: 149286
doi: 10.1016/j.apsusc.2021.149286
16 Yang B H, Shi M B, Huang R L, et al. One-pot synthesis of fluorine functionalized Zr-MOFs and their in situ growth on sponge for oil absorption [J]. Colloid. Surf., 2021, 616A: 126322
17 Ahmed R M G, Anis B, Khalil A S G.Facile surface treatment and decoration of graphene-based 3D polymeric sponges for high performance separation of heavy oil-in-water emulsions [J]. J. Environ. Chem. Eng., 2021, 9: 105087
doi: 10.1016/j.jece.2021.105087
18 Qi P, Wang S H, Wang W J, et al. Chitosan/sodium polyborate based micro-nano coating with high flame retardancy and superhydrophobicity for cotton fabric [J]. Int. J. Biol. Macromol., 2022, 205: 261
doi: 10.1016/j.ijbiomac.2022.02.062 pmid: 35181330
19 Li J T, Tenjimbayashi M, Zacharia N S, et al. One-step dipping fabrication of Fe3O4/PVDF-HFP composite 3D porous sponge for magnetically controllable oil-water separation [J]. ACS Sustainable Chem. Eng., 2018, 6: 10706
doi: 10.1021/acssuschemeng.8b02035
20 Wang Y, Zhang L, Wang L, et al. Preparation and properties of sepiolite superhydrophobic composite coatings [J]. Chin. J. Mater. Res., 2021, 35(12): 942
doi: 10.11901/1005.3093.2021.205
20 王 杨, 张 磊, 王 磊 等.海泡石超疏水复合涂层的制备和性能 [J]. 材料研究学报, 2021, 35(12): 942
21 Ejeta D D, Wang C F, Lin C H, et al. Preparation of a main-chain-type polybenzoxazine-modified melamine sponge via non-solvent-induced phase inversion for oil absorption and very-high-flux separation of water-in-oil emulsions [J]. Sep. Purif. Technol., 2021, 263: 118387
doi: 10.1016/j.seppur.2021.118387
22 Zhu Y F, Du Y G, Su J M, et al. Durable superhydrophobic melamine sponge based on polybenzoxazine and Fe3O4 for oil/water separation [J]. Sep. Purif. Technol., 2021, 275: 119130
doi: 10.1016/j.seppur.2021.119130
23 Cao Y Z, Lu X, Wang L T, et al. Preparation and anticorrosion properties of bio-based polybenzoxazine/cellulose nanocrystals superhydrophobic coating [J]. CIESC J., 2021, 72(11): 5717
doi: 10.11949/0438-1157.20210820
23 曹玉柱, 陆 馨, 王立通 等.生物基聚苯并噁嗪/纤维素纳米晶超疏水防腐蚀涂层的制备及性能 [J]. 化工学报, 2021, 72(11): 5717
doi: 10.11949/0438-1157.20210820
24 Bai W B, Lin H M, Chen K H, et al. Eco-friendly stable cardanol-based benzoxazine modified superhydrophobic cotton fabrics for oil-water separation [J]. Sep. Purif. Technol., 2020, 253: 117545
doi: 10.1016/j.seppur.2020.117545
25 Kumar G D, Prabunathan P, Manoj M, et al. Fluorine free bio-based polybenzoxazine coated substrates for oil-water separation and anti-icing applications [J]. J. Polym. Environ., 2020, 28: 2444
doi: 10.1007/s10924-020-01782-z
26 Athauda T J, Ozer R R.Nylon fibers as template for the controlled growth of highly oriented single crystalline ZnO nanowires [J]. Cryst. Growth Des., 2013, 13(6): 2680
doi: 10.1021/cg400483d
27 Ebrahimi M, Bayat A, Ardekani S R, et al. Sustainable superhydrophobic branched hierarchical ZnO nanowires: stability and wettability phase diagram [J]. Appl. Surf. Sci., 2021, 561: 150068
doi: 10.1016/j.apsusc.2021.150068
28 Ji C H. Preparation and properties of superhydrophobic and high elastic melamine-based foams for oil absorption [D]. Shanghai: East China Normal University, 2017
28 姬翠红.超疏水高弹性的三聚氰胺基泡沫的制备及其吸油性能 [D]. 上海: 华东师范大学, 2017
29 Nguyen-Dinh M T, Bui T S, Lee B K, et al. Superhydrophobic MS@CuO@SA sponge for oil/water separation with excellent durability and reusability [J]. Chemosphere, 2022, 292: 133328
doi: 10.1016/j.chemosphere.2021.133328
30 Anbazhagan R, Krishnamoorthi R, Thankachan D, et al. Fluorine-free superhydrophobic covalent-organic-polymer nanosheet coating for selective dye and emulsion separation [J]. Langmuir, 2022, 38: 4310
doi: 10.1021/acs.langmuir.1c03492 pmid: 35369694
31 Duan H N, Lyu H H, Shen B X, et al. Superhydrophobic-superoleophilic biochar-based foam for high-efficiency and repeatable oil-water separation [J]. Sci. Total Environ., 2021, 780: 146517
doi: 10.1016/j.scitotenv.2021.146517
32 Xue J W, Zhu L, Zhu X, et al. Tetradecylamine-MXene functionalized melamine sponge for effective oil/water separation and selective oil adsorption [J]. Sep. Purif. Technol., 2021, 259: 118106
doi: 10.1016/j.seppur.2020.118106
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.
[5] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[6] 刘思妤, 李正元, 陈立佳, 李锋. 原位自生纳米Al2O3/Al-Zn-Cu复合材料的力学性能[J]. 材料研究学报, 2022, 36(4): 307-313.
[7] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[8] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[9] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[10] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[11] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[12] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[13] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[14] 王昊, 赵洪峰, 康加爽, 周远翔, 谢清云. B2O3Al2O3共同掺杂ZnO压敏陶瓷的性能[J]. 材料研究学报, 2021, 35(2): 110-114.
[15] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.