Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (1): 23-32    DOI: 10.11901/1005.3093.2023.170
  研究论文 本期目录 | 过刊浏览 |
Ce元素对316LN奥氏体不锈钢高温蠕变性能的影响
杨仁贤1,2, 马澍成1,2, 蔡欣1, 郑雷刚1, 胡小强1,2(), 李殿中1,2()
1 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
2 中国科学技术大学材料科学与工程学院 沈阳 110016
Influence of Cerium on Creep Properties of 316LN Austenitic Stainless Steel
YANG Renxian1,2, MA Shucheng1,2, CAI Xin1, ZHENG Leigang1, HU Xiaoqiang1,2(), LI Dianzhong1,2()
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

杨仁贤, 马澍成, 蔡欣, 郑雷刚, 胡小强, 李殿中. Ce元素对316LN奥氏体不锈钢高温蠕变性能的影响[J]. 材料研究学报, 2024, 38(1): 23-32.
Renxian YANG, Shucheng MA, Xin CAI, Leigang ZHENG, Xiaoqiang HU, Dianzhong LI. Influence of Cerium on Creep Properties of 316LN Austenitic Stainless Steel[J]. Chinese Journal of Materials Research, 2024, 38(1): 23-32.

全文: PDF(15630 KB)   HTML
摘要: 

采用蠕变持久试验机、扫描电子显微镜和透射电子显微镜等实验手段,系统研究了Ce元素添加对316LN奥氏体不锈钢(316LN钢)高温蠕变行为和微观组织的影响。结果表明,添加0.032%的Ce元素使316LN钢的蠕变断裂寿命显著提高。在温度为700℃、载荷为150 MPa的条件下,添加0.032%Ce元素的316LN钢蠕变寿命为555.5 h,比不添加Ce元素时的蠕变寿命312.6 h提高了78%。在温度为600~700℃、载荷为150~200 MPa的条件下,未添加Ce元素和添加0.032%Ce元素的316LN钢对应的蠕变应力指数分别为7.64和9.07,蠕变激活能分别为415.3 kJ/mol和454.8 kJ/mol,蠕变门槛应力分别为61.7 MPa和76.6 MPa。蠕变断裂后的微观组织表明,添加0.032%的Ce元素显著促进了蠕变过程中316LN钢晶内Laves相的析出。晶内细小弥散分布的Laves相,在蠕变过程中能够阻碍位错移动,提高基体的蠕变抗力,从而有效改善蠕变性能。

关键词 金属材料316LN奥氏体不锈钢高温蠕变稀土Ce析出强化    
Abstract

316LN austenitic stainless steel (316LN steel) is widely used as structural components in nuclear industries for their excellent corrosion resistance and high temperature mechanical properties. With the development of next-generation nuclear reactors, it is imperative to improve the high temperature creep properties of 316LN steel to warrant the corresponding components being subjected to higher temperatures. Alloying with rare earth (RE) elements, such as Cerium (Ce), are considered as a promising approach to enhance creep properties of the austenitic stainless steels. However, the effect of Ce on the microstructure evolution and creep performance of 316LN steel have not been reported. In this study, the effect of Ce on creep behavior and microstructure of 316LN steel in the temperature range 600oC to 700oC and stresses range150 MPa to 200 MPa was investigated by electronic creep tester, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that the addition of 0.032%Ce could significantly improve the creep rupture life of 316LN steel. For instance, at 700oC/150 MPa, the creep life of 316LN steel with 0.032%Ce prominently increased from 313 h to 556 h. The creep stress exponent, activation energy and threshold stress of 316LN steel without Ce were found to be 7.64, 415.3 kJ/mol and 61.7 MPa, respectively, whereas those of 316LN steel with 0.032%Ce addition were corresponding to 9.07, 454.8 kJ/mol and 76.6 MPa. The creep mechanism of those two 316LN steels were also controlled by dislocation climbing. The addition of 0.032%Ce has not changed the creep mechanism of 316LN steel but clearly raised the creep activation energy and threshold stress. Furthermore, microstructural analysis demonstrates that the addition of 0.032%Ce may obviously promote the precipitation of Laves phase within the matrix. These intragranular Laves phases could inhibit the movement of dislocations during creep deformation, notably enhancing the creep resistance of the matrix. Therefore, the addition of 0.032%Ce remarkably improved the creep properties of 316LN steel by intragranular Laves precipitation strengthening.

Key wordsmetallic materials    316LN austenitic stainless steel    creep    cerium    precipitation strengthening
收稿日期: 2023-03-15     
ZTFLH:  TG142.1  
基金资助:国家重点研发计划(2020YFB2006800);中国科学院青年创新促进会优秀项目(Y2021060);沈阳市中青年科技创新人才支持计划项目(RC220474)
通讯作者: 胡小强,研究员,xqhu@imr.ac.cn,研究方向为稀土特殊钢研发与应用;
李殿中,研究员,dzli@imr.ac.cn,研究方向为先进钢铁材料研发与应用
Corresponding author: HU Xiaoqiang, Tel: (024)23971127, E-mail: xqhu@imr.ac.cn;
LI Dianzhong, Tel: (024)23971281, E-mail: dzli@imr.ac.cn
作者简介: 杨仁贤,男,1994年生,博士生
SteelCSiMnCrMoNiCeNFeGrain size / μm
0Ce0.0100.311.6317.732.7713.7600.13Bal.77 ± 37
32Ce0.0130.261.8017.762.8313.650.0320.13Bal.66 ± 32
表1  两种316LN奥氏体不锈钢的主要化学成分
图1  不同温度和应力条件下0Ce和32Ce钢的蠕变应变曲线和蠕变速率曲线
图2  0Ce和32Ce钢的最小蠕变速率与蠕变应力、温度倒数的对数曲线
图3  0Ce和32Ce钢在700℃不同应力蠕变断裂后的SEM微观组织
图4  700℃、150 MPa条件蠕变断裂后0Ce钢晶界处析出相的TEM图像和Mo、Cr元素的面分布
PhaseCSiMnCrMoNiFe
Laves2.0 ± 0.41.5 ± 0.11.515.3 ± 1.531.1 ± 2.46.9 ± 0.541.7
Chi0.9 ± 0.80.6 ± 0.11.824.5 ± 0.220.4 ± 0.64.2 ± 0.147.6
Sigma0.3 ± 0.11.2 ± 0.81.731.9 ± 1.511.1 ± 1.15.1 ± 0.548.7
表2  316LN奥氏体不锈钢蠕变析出相的化学成分
图5  700℃、150 MPa条件蠕变断裂后32Ce钢晶界处析出相的TEM图像和Cr、Mo元素面分布
图6  700℃、200 MPa和150 MPa条件蠕变断裂后32Ce钢晶内析出相的TEM图像和元素分析
图7  0Ce和32Ce钢在700℃、150 MPa实验条件中断蠕变后的SEM微观组织
图8  0Ce和32Ce钢在700℃最小蠕变速率的1/5次方随蠕变应力的变化
1 Roberts J T A. Structural Materials in Nuclear Power Systems [M]. New York: Springer, 1981: 201
2 Zinkle S J, Was G S.Materials challenges in nuclear energy [J]. Acta Mater., 2013, 61: 735
doi: 10.1016/j.actamat.2012.11.004
3 GIF.A Technology Roadmap for Generation IV Nuclear Energy Systems [R]. U S: DOE, 2002
4 Zinkle S J, Busby J T.Structural materials for fission & fusion energy [J]. Mater. Today, 2009, 12: 12
5 Mathew M D, Laha K, Ganesan V.Improving creep strength of 316L stainless steel by alloying with nitrogen [J]. Mater. Sci. Eng., A, 2012, 535: 76
doi: 10.1016/j.msea.2011.12.044
6 Vodárek V.Creep behaviour and microstructural evolution in AISI 316LN + Nb steels at 650oC [J]. Mater. Sci. Eng., A, 2011, 528: 4232
doi: 10.1016/j.msea.2011.02.025
7 Vodárek V.Stability of Z-phase and M6X in creep-resistant steels [J]. Scr. Mater., 2012, 66: 678
doi: 10.1016/j.scriptamat.2012.01.024
8 Lu W, Hua X, Zhou X, et al. Aging precipitation behaviors of Nb-contained 316LN SS [J]. J. Alloys Compd., 2017, 701: 993
doi: 10.1016/j.jallcom.2017.01.103
9 Cai B, Kang J H, Hong C W, et al. Effects of N and Cu on the precipitation and the creep life of 316L austenitic stainless steel at 650oC [J]. Mater. Sci. Eng., A, 2016, 662: 198
doi: 10.1016/j.msea.2016.03.054
10 Wang L M. Application of Rare Earths Elements in Low Alloy and Alloy Steels [M]. Beijing: Metallurgical Industry Press, 2016
10 王龙妹. 稀土在低合金及合金钢中的应用 [M]. 北京: 冶金工业出版社, 2016
11 Xu Y W, Song S H, Wang J W.Effect of rare earth cerium on the creep properties of modified 9Cr-1Mo heat-resistant steel [J]. Mater. Lett., 2015, 161: 616
doi: 10.1016/j.matlet.2015.09.051
12 Laha K, Kyono J, Shinya N.An advanced creep cavitation resistance Cu-containing 18Cr-12Ni-Nb austenitic stainless steel [J]. Scr. Mater., 2007, 56: 915
doi: 10.1016/j.scriptamat.2006.12.030
13 Guimarães A V, Silveira R M S, Almeida L H, et al. Influence of yttrium addition on the microstructural evolution and mechanical properties of superalloy 718 [J]. Mater. Sci. Eng., A, 2020, 776: 139023
doi: 10.1016/j.msea.2020.139023
14 Nunes F C, Almeida L H, Dille J, et al. Microstructural changes caused by yttrium addition to NbTi-modified centrifugally cast HP-type stainless steels [J]. Mater. Charact., 20017, 58: 132
doi: 10.1016/j.matchar.2006.04.007
15 Nunes F C, Dille J, Delplancke J L, et al. Yttrium addition to heat-resistant cast stainless steel [J]. Scr. Mater., 2006, 54: 1553
doi: 10.1016/j.scriptamat.2006.01.024
16 Chen L, Long H, Liu X, et al. Effect of rare earth alloying on creep rupture of economical 21Cr-11Ni-N heat-resistant austenitic steel at 650oC [J]. J. Rare Earths, 2016, 34: 447
doi: 10.1016/S1002-0721(16)60047-9
17 Kim S M, Kim J S, Kim KT, et al. Effect of Ce addition on secondary phase transformation and mechanical properties of 27Cr-7Ni hyper duplex stainless steels [J]. Mater. Sci. Eng., A, 2013, 573: 27
doi: 10.1016/j.msea.2013.02.044
18 Zhang J S. High Temperature Deformation and Fracture of Materials [M]. Beijing: Science Press, 2007
18 张俊善. 材料的高温变形与断裂 [M]. 北京: 科学出版社, 2007
19 Sherby O D, Taleff E M.Influence of grain size, solute atoms and second-phase particles on creep behavior of polycrystalline solids [J]. Mater. Sci. Eng., A, 2002, 322(1) 89
20 Rieth M.A comprising steady-state creep model for the austenitic AISI 316 L(N) steel [J]. J. Nucl. Mater., 2007, 367-370: 915
doi: 10.1016/j.jnucmat.2007.03.062
21 Ni Z F, Xue F. High temperature creep characteristics of in-situ micro-/nano-meter TiC dispersion strengthened 304 stainless steel [J]. Chin. J. Mater. Res., 2019, 33: 306
doi: 10.11901/1005.3093.2018.422
21 倪自飞, 薛 烽.原位微米/纳米TiC颗粒弥散强化304不锈钢的高温蠕变特性 [J]. 材料研究学报, 2019, 33: 306
doi: 10.11901/1005.3093.2018.422
22 Sahlaoui H, Makhlouf K, Sidhom H, et al. Effects of ageing conditions on the precipitates evolution, chromium depletion and intergranular corrosion susceptibility of AISI 316L: experimental and modeling results [J]. Mater. Sci. Eng., A, 2004, 372: 98
doi: 10.1016/j.msea.2003.12.017
23 Weiss B, Stickler R.Phase instabilities during high temperature exposure of 316 austenitic stainless steel [J]. Metall. Mater. Trans. B, 1972, 3: 851
doi: 10.1007/BF02647659
24 Koutsoukis T, Redjaïmia A, Fourlaris G.Characterization of precipitation sequences in superaustenitic stainless steels [J]. Solid State Phenom., 2011, 172-174: 493
doi: 10.4028/www.scientific.net/SSP.172-174
25 Sasikala G, Ray S K, Mannan S L.Kinetics of transformation of delta ferrite during creep in a type 316(N) stainless steel weld metal [J]. Mater. Sci. Eng., A, 2003, 359: 86
doi: 10.1016/S0921-5093(03)00371-X
26 Yang R X, Cai X, Zheng L G, et al. Enhancement of mechanism of cerium in 316LN austenitic stainless steel during creep at 700oC [J]. Acta Metall. Sin. (Engl. Lett.), 2023, 36: 507
doi: 10.1007/s40195-022-01467-7
27 Wang Y Q, Lin S H, Li N, et al. Overview of σ phase influence on mechanical properties of stainless steel [J]. J. Iron Steel Res., 2016, 28: 1
doi: 10.1007/s42243-020-00463-4
27 王永强, 林苏华, 李 娜 等.σ相析出对不锈钢力学性能的影响概述 [J]. 钢铁研究学报, 2016, 28: 1
28 Zakine C, Prioul C, Francois D.Influence of the χ-phase on the tensile properties of ODS steels [J]. J. Nucl. Mater., 1996, 230: 78
doi: 10.1016/0022-3115(95)00223-5
29 Zhang J S, Li P E, Jin J Z.Combined matrix/boundary precipitation strengthening in creep of Fe-15 Cr-25 Ni alloys [J]. Acta Metall. Mater., 1991, 39: 3063
doi: 10.1016/0956-7151(91)90039-4
30 Stein F, Leineweber A.Laves phases: a review of their functional and structural applications and an improved fundamental understanding of stability and properties [J]. J. Mater. Sci., 2021, 56: 5321
doi: 10.1007/s10853-020-05509-2
[1] 秦艳利, 赵光普, 张昊, 倪丁瑞, 肖伯律, 马宗义. 选区激光熔融Al-30Si合金的微观组织和性能[J]. 材料研究学报, 2024, 38(1): 43-50.
[2] 李博森, 廖忠新, 高大强. BNZ组分对KNN基无铅压电陶瓷结构和性能的影响[J]. 材料研究学报, 2024, 38(1): 51-60.
[3] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[4] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[5] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[6] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[7] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[8] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[9] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[10] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[11] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.