Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (9): 697-705    DOI: 10.11901/1005.3093.2022.347
  研究论文 本期目录 | 过刊浏览 |
LPSOMg-Y-Er-Ni合金的组织和拉伸性能
欧阳康昕, 周达, 杨宇帆, 张磊()
南昌航空大学航空制造工程学院 南昌 330063
Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases
OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei()
School of Aeronautical Manufacture Engineering, Nanchang Hangkong University, Nanchang 330063, China
引用本文:

欧阳康昕, 周达, 杨宇帆, 张磊. 含LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
Kangxin OUYANG, Da ZHOU, Yufan YANG, Lei ZHANG. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. Chinese Journal of Materials Research, 2023, 37(9): 697-705.

全文: PDF(15490 KB)   HTML
摘要: 

用重力铸造法制备3种Mg97Y2-x Er x Ni1(x=0.5、1、1.5)合金,研究了其铸态和(520℃,12 h)固溶态的组织和拉伸性能。结果表明:3种铸态合金都由α-Mg基体和18R-LPSO相组成,其中Mg97Y1Er1Ni1晶粒最细,LPSO相的体积分数最高、尺寸最小且分布最为均匀,因此其室温拉伸性能最佳。进行(520℃,12 h)固溶处理后,3种固溶态合金仍然由α-Mg基体和18R-LPSO相组成。固溶态Mg97Y1.5Er0.5Ni1合金晶内出现基面层错,但是并不具有完整的堆垛周期性特征。与铸态相比,3种固溶态合金的室温拉伸性能均有所提高。

关键词 金属材料Mg-Y-Er-Ni合金LPSO相组织拉伸性能    
Abstract

Mg-alloys Mg97Y1.5Er0.5Ni1, Mg97Y1Er1Ni1 and Mg97Y0.5Er1.5Ni1 were fabricated by gravity casting method. Then the microstructure and tensile properties of the as-cast and solution-treated (520℃, 12 h) alloys were investigated by means of SEM with EDS, TEM and electronic universal testing machine. The results show that the as-cast alloys Mg97Y1.5Er0.5Ni1, Mg97Y1Er1Ni1 and Mg97-Y0.5Er1.5Ni1 are mainly composed of α-Mg matrix and 18R-LPSO phase. The grain size of α-Mg in the as-cast Mg97Y1Er1Ni1 alloy is the smallest and the volume fraction of LPSO phase is the highest among all the three alloys. Moreover, the as-cast Mg97Y1Er1Ni1 alloy presents the finest particles of LPSO phase and they also distribute much uniformly. Therefore, the as-cast Mg97Y1Er1Ni1 alloy shows the best tensile properties. After solid solution treatment at 520℃ for 12 h, the three alloys Mg97Y1.5-Er0.5Ni1, Mg97Y1Er1Ni1 and Mg97Y0.5Er1.5Ni1 all consist mainly of α-Mg matrix and 18R-LPSO phase. Inside the grains of the solution-treated Mg97Y1.5Er0.5Ni1 alloy, it is found that there are some stacking faults, which does not have a complete periodicity. The tensile properties of the three solution-treated alloys are all enhanced compared with those of the as-cast alloys.

Key wordsmetallic materials    Mg-Y-Er-Ni alloy    LPSO phase    microstructure    tensile property
收稿日期: 2022-06-28     
ZTFLH:  TG146.2+2  
基金资助:国家自然科学基金(51401102)
通讯作者: 张磊,副教授,niatzhanglei01@126.com,研究方向为高强轻合金
Corresponding author: ZHANG Lei,Tel: 13576062172,E-mail: niatzhanglei01@126.com
作者简介: 欧阳康昕,男,1995年生,硕士生
AlloysMgYErNi

Mg97Y1.5Er0.5Ni1

Mg97Y1Er1Ni1

Mg97Y0.5Er1.5Ni1

Bal.

Bal.

Bal.

5.04

3.42

1.78

3.11

6.43

9.47

2.29

2.11

2.31

表1  实验合金的成分
图1  铸态Mg97Y2-x Er x Ni1合金的XRD谱
图2  铸态Mg97Y2-x Er x Ni1合金微观组织的BSE照片
PositionMgYErNi

A

B

C

90.69

90.64

90.68

3.62

2.36

0.94

1.22

2.94

3.72

4.47

4.56

4.66

表2  图2中各微区的EDS分析结果
图3  铸态Mg97Y1Er1Ni1合金中LPSO相的HRTEM形貌和选区电子衍射花样
图4  铸态合金的平均晶粒尺寸、LPSO相平均宽度和LPSO相体积分数
图5  铸态合金的室温拉伸性能
图6  铸态合金室温拉伸断口的形貌
图7  固溶态Mg97Y2-x Er x Ni1合金的XRD谱
图8  固溶态Mg97Y2-x Er x Ni1合金微观组织的BSE照片
PositionMgYErNi

A

B

C

D

89.48

98.14

89.91

90.39

3.86

0.71

2.48

1.32

1.48

1.15

2.79

3.51

5.18

-

4.62

4.78

表3  图8中各微区的EDS分析结果
图9  固溶态Mg97Y1.5Er0.5Ni1合金中LPSO相的HRTEM形貌和选区电子衍射花样
图10  固溶态Mg97Y1.5Er0.5Ni1合金中基面层错的TEM明场像、HRTEM相和选区电子衍射花样
图11  固溶态合金的平均晶粒尺寸、LPSO相平均宽度和LPSO相的体积分数
图12  固溶态合金的室温拉伸性能
Alloys

RE/%,

atomic fraction

UTS / MPaYS / MPaElongationg / %State

Mg97Y1Er1Ni1

Mg97Y1Er1Ni1

Mg96.23Zn0.88Dy2.21Er0.68[26]

Mg96.23Zn0.88Dy2.21Er0.68[26]

Mg97.5Zn0.9Y0.8Gd0.8[13]

Mg97.5Zn0.9Y0.8Gd0.8[13]

Mg98.5Y1Ni0.5[17]

Mg97Gd2Ni1[16]

2

2

2.89

2.89

1.6

1.6

1

2

223

229

150.51

123.29

228.8

210.2

208

203

124

128

84.36

95.79

149

104.6

93

-

8.0

8.1

6.74

7.03

3.2

7.8

8.0

8.8

As-cast

T4

As-cast

T4

As-cast

T4

As-cast

As-cast

表4  本文制备的Mg97Y1Er1Ni1合金和其他相关合金的室温拉伸性能
1 Sun H, Chen M, Cheng M, et al. Recrystallization and texture of magnesium alloy sheet during warm rolling based on multi-scale model [J]. Chin. J. Mater. Res., 2021, 35(5): 339
1 孙 贺, 陈 明, 程 明 等. 基于多尺度模型的镁合金薄板温轧再结晶和织构 [J]. 材料研究学报, 2021, 35(5): 339
2 Wang D J, Zhang M Q, Ji Z S, et al. Process and properties of graphene reinforced magnesium matrix composites prepared by in-situ method [J]. Chin. J. Mater. Res., 2021, 35(6): 474
2 王殿君, 张明秋, 吉泽升 等. 原位自生法制备石墨烯增强镁基复合材料的工艺和性能 [J]. 材料研究学报, 2021, 35(6): 474
3 Liu Y, Kang R, Feng X H, et al. Microstructure and mechanical properties of Mg-Al-Ca-Mn-Zn wrought magnesium alloy [J]. Chin. J. Mater. Res., 2022, 36(1): 13
3 刘 洋, 康 锐, 冯小辉 等. Mg-Al-Ca-Mn-Zn变形镁合金的组织和力学性能 [J]. 材料研究学报, 2022, 36(1): 13
4 Gu J Q, Tang W N, Xu S W. Evolution of tensile deformation microstructure of Mg-0.4Zn magnesium alloy extruded sheet [J]. Chin. J. Mater. Res., 2021, 37(7): 553
4 顾佳卿, 唐伟能, 徐世伟. Mg-0.4Zn镁合金挤压板拉伸变形组织的演变 [J]. 材料研究学报, 2021, 37(7): 553
5 Kawamura Y, Hayashi K, Inoue A, et al. Rapidly solidified powder metallurgy Mg97ZnlY2 alloys with excellent tensile yield strength above 600 MPa [J]. Mater. Trans. JIM, 2001, 42: 1172
6 Abe E, Kawamura Y, Hayashi K, et al. Long-period ordered structure in a high-strength nanocrystalline Mg-1at% Zn-2at% Y alloy studied by atomic-resolution Z-contrast STEM [J], Acta Mater., 2002, 50: 3845
doi: 10.1016/S1359-6454(02)00191-X
7 Luo Z, Zhang S. High-resolution electron microscopy on the X-Mg12ZnY phase in a high strength Mg-Zn-Zr-Y magnesium alloy [J]. J. mater. Sci. lett., 2000, 19(9): 813.
doi: 10.1023/A:1006793411506
8 Chuang W S, Huang J C, Lin P H, et al. Deformation mechanisms and mechanical properties of (0001) Mg-Zn-Y 18R-LPSO single crystals [J]. J. Alloy. Compd., 2019, 772: 288
doi: 10.1016/j.jallcom.2018.09.091
9 Hagihara K, Li Z, Yamasaki M, et al. Strengthening mechanisms acting in extruded Mg-based long-period stacking ordered (LPSO)-phase alloys [J], Acta Mater., 2019, 163: 226
doi: 10.1016/j.actamat.2018.10.016
10 Du X H, Duan G S, Hong M, et al. Effect of V on the microstructure and mechanical properties of Mg-10Er-2Cu alloy with a long period stacking ordered structure [J]. Mater. Lett., 2014, 122(5): 312
doi: 10.1016/j.matlet.2014.02.056
11 Liu H, Xue F, Bai J, et al. Effect of substitution of 1 at% Ni for Zn on the microstructure and mechanical properties of Mg94Y4Zn2 alloy [J]. Mater. Sci. Eng. A, 2013, 585: 387
doi: 10.1016/j.msea.2013.07.036
12 Yang K, Zhang J S, Zong X M, et al. Effect of microalloying with boron on the microstructure and mechanical properties of Mg-Zn-Y-Mn alloy [J]. Mater Sci.Eng. A, 2016, 669: 340
13 Liao H, Kim J, Lee T, et al. Effect of heat treatment on LPSO morphology and mechanical properties of Mg-Zn-Y-Gd alloys [J]. J. Magnes. Alloy., 2020, 8: 1120.
doi: 10.1016/j.jma.2020.06.009
14 Zhang L, Huang H, Zhang S, et al. Microstructure, mechanical properties and tribological behavior of two-phase Mg-Y-Cu alloys with long period stacking ordered phases [J]. Met. Mater. Int., 2021, 27: 1605
doi: 10.1007/s12540-019-00578-8
15 Kawamura Y, Yamasaki M. Formation and mechanical properties of Mg97Zn1RE2 alloys with long-period stacking ordered structure [J]. Mater Trans., 2007, 48: 2986.
doi: 10.2320/matertrans.MER2007142
16 Wang D D, Zhang W B, Zong X M, et al. Abundant long period stacking ordered structure induced by Ni addition into Mg-Gd-Zn alloy [J]. Mater. Sci. Eng. A, 2014, 9.
17 Yang X, Wu S S, Lü S L, et al. Effects of Ni levels on microstructure and mechanical properties of Mg-Ni-Y alloy reinforced with LPSO structure [J]. J. Alloy. Compd., 2017, 726:2 76.
doi: 10.1016/j.jallcom.2017.08.003
18 Zhang L, Zhang S J, Ouyang K X, et al. Microstructure and mechanical properties of Mg-Er-Cu/Ni/Zn alloy with long period stacking ordered phases [J]. Adv. Eng. Mater., 2021:2100368.
19 Wen K, Du W B, Liu K, et al. Precipitation behavior of the 14H-LPSO structure in Mg-12Gd-2Er-1Zn-0.6Zr alloy [J]. Rare Metals, 2016, 5(35): 367
20 Wang Y, Zhang F, Wang Y, et al. Effect of Zn content on the microstructure and mechanical properties of Mg-Gd-Y-Zr alloys [J]. Mater. Sci. Eng. A, 2019, 745: 149
doi: 10.1016/j.msea.2018.12.088
21 Zhu C, Zhou L, Zheng J, et al. Cluster on interface of LPSO phase and matrix in Mg-Gd-Y-Ni alloy: Atomic scale insight from HAADF-STEM [J]. Mater. Lett., 2019, 235: 71
doi: 10.1016/j.matlet.2018.09.162
22 Wu A R, Xia C Q. Study of the microstructure and mechanical properties of Mg-rare earth alloys [J]. Mater. Des., 2007, 28: 1963
doi: 10.1016/j.matdes.2006.04.023
23 Rokhlin L L, Dobatkina T V. Nikitina N I. Constitution and properties of the ternary magnesium alloys containing two rare-earth metals of different subgroups [J]. Mater. Sci. Forum. 2003, 419/422: 291
24 Fang D R, Zhao S S, Lin X P, et al. Correlation between microstructure and mechanical properties of columnar crystals in the directionally solidified Mg-Gd-Y-Er alloy [J]. J. Magnes. Alloy., 2022, 10(3): 743
doi: 10.1016/j.jma.2020.11.025
25 Lu R P, Jiao K, Li N T, et al. Microstructure and damping properties of LPSO phase dominant Mg-Ni-Y and Mg-Zn-Ni-Y alloys [J]. J. Magnes. Alloy., .
26 Liu X Q, Zhao D S, Ye L L., et al. Effect of Er contents on the microstructure of long period stacking ordered phase and the corresponding mechanical properties in Mg-Dy-Er-Zn alloys [J]. Mater. Sci. Eng. A, 2018, 78: 461
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.