材料研究学报, 2023, 37(9): 697-705 DOI: 10.11901/1005.3093.2022.347

研究论文

LPSOMg-Y-Er-Ni合金的组织和拉伸性能

欧阳康昕, 周达, 杨宇帆, 张磊,

南昌航空大学航空制造工程学院 南昌 330063

Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases

OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei,

School of Aeronautical Manufacture Engineering, Nanchang Hangkong University, Nanchang 330063, China

通讯作者: 张磊,副教授,niatzhanglei01@126.com,研究方向为高强轻合金

责任编辑: 黄青

收稿日期: 2022-06-28   修回日期: 2023-04-05  

基金资助: 国家自然科学基金(51401102)

Corresponding authors: ZHANG Lei,Tel: 13576062172,E-mail:niatzhanglei01@126.com

Received: 2022-06-28   Revised: 2023-04-05  

Fund supported: National Natural Science Foundation of China(51401102)

作者简介 About authors

欧阳康昕,男,1995年生,硕士生

摘要

用重力铸造法制备3种Mg97Y2-x Er x Ni1(x=0.5、1、1.5)合金,研究了其铸态和(520℃,12 h)固溶态的组织和拉伸性能。结果表明:3种铸态合金都由α-Mg基体和18R-LPSO相组成,其中Mg97Y1Er1Ni1晶粒最细,LPSO相的体积分数最高、尺寸最小且分布最为均匀,因此其室温拉伸性能最佳。进行(520℃,12 h)固溶处理后,3种固溶态合金仍然由α-Mg基体和18R-LPSO相组成。固溶态Mg97Y1.5Er0.5Ni1合金晶内出现基面层错,但是并不具有完整的堆垛周期性特征。与铸态相比,3种固溶态合金的室温拉伸性能均有所提高。

关键词: 金属材料; Mg-Y-Er-Ni合金; LPSO相; 组织; 拉伸性能

Abstract

Mg-alloys Mg97Y1.5Er0.5Ni1, Mg97Y1Er1Ni1 and Mg97Y0.5Er1.5Ni1 were fabricated by gravity casting method. Then the microstructure and tensile properties of the as-cast and solution-treated (520℃, 12 h) alloys were investigated by means of SEM with EDS, TEM and electronic universal testing machine. The results show that the as-cast alloys Mg97Y1.5Er0.5Ni1, Mg97Y1Er1Ni1 and Mg97-Y0.5Er1.5Ni1 are mainly composed of α-Mg matrix and 18R-LPSO phase. The grain size of α-Mg in the as-cast Mg97Y1Er1Ni1 alloy is the smallest and the volume fraction of LPSO phase is the highest among all the three alloys. Moreover, the as-cast Mg97Y1Er1Ni1 alloy presents the finest particles of LPSO phase and they also distribute much uniformly. Therefore, the as-cast Mg97Y1Er1Ni1 alloy shows the best tensile properties. After solid solution treatment at 520℃ for 12 h, the three alloys Mg97Y1.5-Er0.5Ni1, Mg97Y1Er1Ni1 and Mg97Y0.5Er1.5Ni1 all consist mainly of α-Mg matrix and 18R-LPSO phase. Inside the grains of the solution-treated Mg97Y1.5Er0.5Ni1 alloy, it is found that there are some stacking faults, which does not have a complete periodicity. The tensile properties of the three solution-treated alloys are all enhanced compared with those of the as-cast alloys.

Keywords: metallic materials; Mg-Y-Er-Ni alloy; LPSO phase; microstructure; tensile property

PDF (15490KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705 DOI:10.11901/1005.3093.2022.347

OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. Chinese Journal of Materials Research, 2023, 37(9): 697-705 DOI:10.11901/1005.3093.2022.347

镁合金是目前实际应用中最轻的金属结构材料,在航空航天、国防军事、电子、轨道交通、汽车等领域有广阔的应用前景[1~4]。但是,传统镁合金的绝对强度偏低和室温塑性较差,使其应用范围受到了限制。2001年,Kawamura等[5]首次用快速凝固/粉末冶金技术制备出一种新型高强Mg97Y2Zn1(原子分数,以下无特殊说明合金成分均指原子分数)合金。热挤压后这种合金表现出优异的力学性能,其室温屈服强度超过600 MPa,伸长率也达到5%。后续研究发现[6],Mg97Y2Zn1合金晶粒内部析出的长周期堆垛有序(Long-period stacking ordered, LPSO)相对其优异的力学性能有重要贡献。含LPSO相镁合金因具有优异的室/高温力学性能[7~14],近年来受到学术界和工业界的极大关注。

迄今为止陆续有学者研究发现,多种Mg-RE-TM系合金(RE=Gd、Y、Dy、Er、Nd、Tm等,TM=Zn、Ni、Cu、Al等)中存在LPSO相[8~15]。Wang等[16]研究发现,用少量的Ni取代Zn能明显提高Mg-Gd-Zn合金中LPSO相的含量。其原因是,与Zn相比,Ni在镁基体中的固溶度更低,这有利于LPSO相的析出。Yang等[17]研究了Ni含量对Mg-Y-Ni合金显微组织和拉伸性能的影响。结果表明,Ni含量为0.5%(原子分数)的Mg98.5Y1Ni0.5合金中第二相主要为LPSO相,其室温拉伸性能最佳。研究发现,与Mg96Er3Zn1和Mg96Er3Cu1合金相比,铸态Mg96Er3Ni1合金的室温拉伸性能更优异[18]

目前,对含LPSO相镁合金的研究主要集中在Mg-RE-Zn[5~8,12,16]、Mg-RE-Ni[11,14,17]和Mg-RE-Cu[4,10,18]等单稀土镁合金,而对添加双稀土的Mg-RE1-RE2-TM合金的研究还比较少[19~21]。Wu等[22]研究发现,添加Y、Nd双稀土对镁合金的强化效果明显好于单独添加Y或Nd,使合金的室温和高温强度显著提高。Rokhlin等[23]的研究也表明,在镁合金中混合加入两种稀土元素使其强度大幅度提高。Y和Er是在镁合金中常用的两种稀土合金化元素,在镁基体中的固溶度较高,共晶温度分别为12.5和33.8。同时,随着温度下降Y和Er的固溶度显著降低,其固溶和时效强化效果显著。研究还发现,Y和Er对镁合金的铸态组织均具有一定的细化作用[24]。鉴于此,本文用重力铸造方法制备3种双稀土镁合金Mg97Y2-x Er x Ni1(x=0.5、1、1.5)并对其进行固溶处理,研究其组织和拉伸性能。

1 实验方法

实验用Mg97Y2-x Er x Ni1(x=0.5、1、1.5)合金用功率为5KW的SG2-5-12型井式电阻炉熔炼,原料为纯镁锭(99.96%,质量分数)、纯Ni片(99.97%)、Mg-30Er和Mg-30Y中间合金。重力铸造的浇注温度为720℃。在熔炼和浇注过程中用混合气体(99%CO2+1%SF6,体积分数)进行保护。

用电感耦合高频等离子体发射光谱仪(ICP-AES)测定铸态合金的化学成分,结果列于表1。在520℃对铸态合金试样固溶处理,保温12 h后水淬。

表1   实验合金的成分

Table 1  Chemical composition of the alloys (atomic fraction, %)

AlloysMgYErNi

Mg97Y1.5Er0.5Ni1

Mg97Y1Er1Ni1

Mg97Y0.5Er1.5Ni1

Bal.

Bal.

Bal.

5.04

3.42

1.78

3.11

6.43

9.47

2.29

2.11

2.31

新窗口打开| 下载CSV


用D8 ADVANCE型X射线衍射仪(XRD)测定合金的相组成。用SU1510型扫描电镜(SEM)和配套的能谱仪(EDS)观察合金的微观组织和分析相的成分。使用Image J软件统计合金的平均晶粒尺寸、第二相平均宽度和体积分数。用Talos F200X场发射透射电子显微镜(TEM)分析合金的第二相结构,使用离子减薄仪制备TEM试样。在WDW-E100D型微机控制电子万能试验机上进行室温拉伸试验,拉伸速率为1 mm/min,每组至少使用4个平行试样,取其结果的平均值。用SEM观察拉伸试样断口的形貌。

2 结果和讨论

2.1 铸态合金的组织和拉伸性能

图1分别给出了铸态Mg97Y1.5Er0.5Ni1、Mg97Y1Er1Ni1和Mg97Y0.5Er1.5Ni1合金的XRD谱。可以看出,除了α-Mg相衍射峰,3种合金中LPSO相的衍射峰与PDF 36-1273卡片吻合较好,其对应的LPSO相具有密排六方结构(a=0.321 nm,c=4.698 nm),最早由LUO等[7]表征得到。结果表明,3种铸态合金均由α-Mg基体和LPSO相组成。

图1

图1   铸态Mg97Y2-x Er x Ni1合金的XRD谱

Fig.1   XRD spectra of as-cast Mg97Y2-x Er x Ni1 alloys


图2分别给出了铸态Mg97Y1.5Er0.5Ni1、Mg97Y1Er1Ni1和Mg97Y0.5Er1.5Ni1合金的背散射电子(BSE)照片。可以看出,3种合金的微观组织均主要由α-Mg基体(深灰色衬度)和沿晶界析出的块状第二相(浅灰色衬度)组成。分别对3种合金中的第二相进行EDS能谱分析,结果列于表2。从表2可见,Mg97Y1.5Er0.5Ni1合金中第二相(A点)中的Ni与Y+Er的原子比为0.92,接近1∶1,符合Mg-RE-TM合金LPSO相中TM与RE元素的比值范围[8,11,14,18]。结合XRD结果可知,该块状第二相为LPSO相。Mg97Y1Er1Ni1和Mg97Y0.5Er1.5Ni1合金中的块状第二相(B点、C点)也均为LPSO相。

图2

图2   铸态Mg97Y2-x Er x Ni1合金微观组织的BSE照片

Fig.2   BSE images of as-cast Mg97Y2-x Er x Ni1 alloys (a) x=0.5, (b) x=1 and (c) x=1.5


表2   图2中各微区的EDS分析结果

Table 2  EDS analysis of points marked in Fig.2 (atomic fraction,%)

PositionMgYErNi

A

B

C

90.69

90.64

90.68

3.62

2.36

0.94

1.22

2.94

3.72

4.47

4.56

4.66

新窗口打开| 下载CSV


图3a给出了铸态Mg97Y1Er1Ni1合金中LPSO相的高分辨(HRTEM)像。可以看出,LPSO相呈宽度不一的白色和黑色层片状结构且沿[0002]Mg方向周期性堆垛,是典型的LPSO结构原子层排列特征[15,18]图3b给出了该LPSO相在[112¯0]Mg晶带轴下的选区电子衍射(SAED)花样。可以看出,LPSO相的衍射斑点与纯镁相的类似,但是在n/6 (0002)Mg衍射处可观察到弱衍射斑。晶体衍射结构的消光条件表明,LPSO相的(0018)衍射斑点和纯镁的(0002)衍射斑点重合,由此可确定该LPSO相结构为18R型[6,13,15]。根据LPSO相的形成条件,可将Mg-RE-TM系合金分为两大类[9]:一类是在液态合金凝固过程中生成的LPSO相,通常为18R型,后续固溶处理后转变为14H型,记为Type I LPSO相;另一类是在后续固溶处理过程中析出的LPSO相,通常为14H型,记为Type II LPSO相。显然,本文制备的Mg-Y-Er-Ni合金中的LPSO相属于Type I LPSO相。

图3

图3   铸态Mg97Y1Er1Ni1合金中LPSO相的HRTEM形貌和选区电子衍射花样

Fig.3   HRTEM image (a) and SAED pattern on zone axes B=[112¯0] (b) of LPSO phase in as-cast Mg97Y1Er1Ni1 alloy


对3种铸态合金的平均晶粒尺寸、第二相平均宽度和体积分数的统计分析结果,如图4所示。由图4a可见,Mg97Y1Er1Ni1合金的晶粒最为细小(尺寸仅为19.3 μm),而Mg97Y0.5Er1.5Ni1合金的晶粒最为粗大(尺寸为39.1 μm)。由图4b可见,Mg97Y1Er1Ni1合金中沿晶界析出的LPSO相其平均宽度最小(仅为5.8 μm),即LPSO相的尺寸最小,且其分布也最为均匀。由图4c可见,Mg97Y1Er1Ni1中LPSO相的体积分数最高(为39.5%),而Mg97Y0.5Er1.5Ni1合金中LPSO相的体积分数最低(为28.9%)。这表明,适当的Y、Er配比,如本实验中的1∶1,能显著细化合金的微观组织和促进LPSO相的析出。

图4

图4   铸态合金的平均晶粒尺寸、LPSO相平均宽度和LPSO相体积分数

Fig.4   Average grain size (a), average width of LPSO phase (b) and volume fraction of LPSO phase (c) in as-cast alloys


图5给出了铸态Mg97Y1.5Er0.5Ni1、Mg97Y1Er1Ni1和Mg97Y0.5Er1.5Ni1合金的室温拉伸性能。可以看出,Mg97Y1Er1Ni1合金的室温拉伸性能最佳,其屈服强度、极限拉伸强度和伸长率分别为124 MPa、223 MPa和8.0%;Mg97Y0.5Er1.5Ni1合金的室温拉伸性能最差,其屈服强度、极限拉伸强度和伸长率分别为113 MPa、187 MPa和6.1%。

图5

图5   铸态合金的室温拉伸性能

Fig.5   Tensile properties of as-cast alloys tested at room temperature


在3种铸态合金中,Mg97Y1Er1Ni1合金具有最佳的室温拉伸强度和塑性,其原因是:首先,Mg97Y1Er1Ni1合金的晶粒最细小。晶界能阻碍位错运动,晶粒越细小晶界越多,阻碍作用越大,即产生晶界强化。可用Hall-Petch公式

σGBS=kd-1/2

计算由晶界强化产生的合金屈服强度的提高。 式(1)中k为常数(对于镁合金其值约为160 MPa·µm-1/2 [25]),d为合金的平均晶粒尺寸。将铸态Mg97Y1.5Er0.5Ni1,Mg97Y1Er1Ni1和Mg97Y0.5Er1.5Ni1合金的晶粒尺寸分别代入 式(1),可计算出3种合金的σGBS分别为27.6 MPa,36.4 MPa和25.6 MPa。细晶粒合金不仅强度高,而且塑性好。合金材料的晶粒越细小,在相同的变形量下变形能更趋均匀分散在更多的晶粒内,可降低晶内和晶间的应力集中和引起开裂的倾向,因此在断裂之前能承受更大的塑性变形;其次,Mg97Y1Er1Ni1合金中LPSO相的体积分数最高。LPSO相具有比α-Mg基体更高的硬度、强度和弹性模量[7,12,18],因此作为强化相可增强镁合金。由块状LPSO相产生的合金屈服强度的提高可表示为[25]

Δσp=4φγμfε
φ=μ*/(μ*-γ(μ*-μ))

式中γ为与泊松比相关的调整系数,其数值为0.35;ε为塑性应变,数值为0.39%;μμ分别为Mg基体和18R-LPSO相的剪切模量,数值分别为21.5 GPa和16.6 GPa;f为块状18R-LPSO相的体积分数。将铸态Mg97Y1.5Er0.5Ni1、Mg97Y1Er1Ni1和Mg97Y0.5Er1.5Ni1合金中LPSO相的体积分数分别代入 式(2),可计算出3种合金屈服强度的增量分别为36.7 MPa、42.1 MPa、30.8 MPa。同时,Mg97Y1Er1Ni1合金中LPSO相的尺寸最小且均匀分布。α-Mg基体的强度低于LPSO相,因此在拉伸变形过程中α-Mg基体先发生变形,其内部形成的大量位错不断向沿晶界析出的LPSO相处堆积,从而在LPSO/α-Mg界面产生应力集中。如果合金中LPSO相的尺寸差异较大,则各晶界承受的最大应力不同。随着应力的不断增大裂纹在最薄弱处萌生并扩展,使合金发生断裂。Mg97Y1Er1Ni1合金中沿晶界析出的LPSO相其尺寸差异最小,使各晶界能承受的最小应力提高,有利于提高合金的拉伸强度。同时,LPSO相也具有一定的变形能力,在拉伸过程中尺寸较小的LPSO相能随着α-Mg基体的变形而变形,而尺寸较大的LPSO相则需要更大的应力才能变形。而过大的应力又可能使LPSO/α-Mg界面处萌生裂纹并扩展,加速合金的断裂。因此,Mg97Y1Er1Ni1合金中细小均匀的LPSO相,也有利于提高合金的塑性。

图6分别给出了铸态Mg97Y0.5Er1.5Ni1和Mg97Y1-Er1Ni1合金的室温拉伸断口的形貌。由图6a可见,Mg97Y0.5Er1.5Ni1合金的拉伸断口主要由解理面和撕裂棱组成,表现为解理断裂和准解理断裂混合特征。由图6b可见,与Mg97Y0.5Er1.5Ni1合金相比,Mg97Y1Er1Ni1合金的拉伸断口中解理面的面积显著减小,而撕裂棱的数量明显增多,表现为准解理断裂特征。合金拉伸断口的断裂特征与拉伸实验的数据一致,即Mg97Y1Er1Ni1合金的塑性优于Mg97Y0.5Er1.5Ni1合金。

图6

图6   铸态合金室温拉伸断口的形貌

Fig.6   Fracture surface of as-cast Mg97Y0.5Er1.5Ni1 (a) and Mg97Y1Er1Ni1 alloys (b)


2.2 固溶态合金的组织和拉伸性能

图7分别给出了固溶态Mg97Y1.5Er0.5Ni1、Mg97Y1-Er1Ni1和Mg97Y0.5Er1.5Ni1合金的XRD谱。可以看出,3种固溶态合金均由α-Mg基体和LPSO相组成。这表明,固溶处理没有改变3种合金的相组成。

图7

图7   固溶态Mg97Y2-x Er x Ni1合金的XRD谱

Fig.7   XRD spectra of solution-treated Mg97Y2-x Er x Ni1 alloys


图8分别给出了固溶态Mg97Y1.5Er0.5Ni1、Mg97Y1-Er1Ni1和Mg97Y0.5Er1.5Ni1合金的BSE照片。可以看出,3种固溶态合金的微观组织仍然主要由α-Mg基体(深灰色衬度)和沿晶界分布的块状第二相(浅灰色衬度)组成。对3种合金中第二相的EDS能谱分结果析,列于表3。从表3可见,3种固溶态合金第二相中Ni与Y+Er的原子比均接近1∶1,结合XRD分析结果可以确定其均为LPSO相。由图8a可见,在固溶态Mg97Y1.5Er0.5Ni1合金晶内可观察到非常细小的层片状相(B点),对其EDS能谱分析结果列于表3。根据EDS结果,这种细小层片状相的化学式为Mg98.14(Y,Er)1.86,与α-Mg基体的成分接近。

图8

图8   固溶态Mg97Y2-x Er x Ni1合金微观组织的BSE照片

Fig.8   BSE images of solution-treated Mg97Y2-x Er x Ni1 alloys (a) x=0.5, (b) x=1 and (c) x=1.5


表3   图8中各微区的EDS分析结果

Table 3  EDS analysis of points marked in Fig.8 (atomic fraction, %)

PositionMgYErNi

A

B

C

D

89.48

98.14

89.91

90.39

3.86

0.71

2.48

1.32

1.48

1.15

2.79

3.51

5.18

-

4.62

4.78

新窗口打开| 下载CSV


图9a给出了固溶态Mg97Y1.5Er0.5Ni1合金中LPSO相的HRTEM像。图9b给出了该LPSO相在[112¯0]Mg晶带轴下的SAED花样,其表现为典型的18R-LPSO相特征:5个额外的暗斑均匀分布在(0000)Mg和(0002)Mg两个亮斑之间,将此段距离分成6等份,表明固溶态Mg97Y1.5Er0.5Ni1合金中的LPSO相结构仍为18R型。

图9

图9   固溶态Mg97Y1.5Er0.5Ni1合金中LPSO相的HRTEM形貌和选区电子衍射花样

Fig.9   HRTEM image (a) and SAED pattern on zone axes B=[112¯0] (b) of LPSO phase in solution-treated Mg97Y1.5Er0.5Ni1 alloy


图10a给出了固溶态Mg97Y1.5Er0.5Ni1合金晶内细小层片状相的TEM明场像。可以看出,该层片状相表现为平行于(0002)Mg晶面且宽度不一的细丝状结构。图10c给出了细丝状结构与α-Mg基体叠加的SAED花样,入射电子束平行于[112¯0]Mg晶带轴。可以看出,在(0000)Mg和(0002)Mg衍射斑点间出现沿[0002]Mg方向的衍射芒线(如图10b中箭头标示),其为细丝状结构的衍射信息。图10b给出了该细丝状结构HRTEM像,结合SAED花样可以确定,固溶态Mg97Y1.5Er0.5Ni1合金晶内细小层片状相为纳米尺度的基面层错,在[0002]Mg晶向上并不具备完整的堆垛周期性特征,与LPSO相的长周期堆垛有序结构有本质的不同。基面层错比LPSO相的宽度更小、分布也更为弥散。Wen等[19]研究发现,随着固溶时间的延长Mg-Er-Gd-Zn-Zr合金基体中的层状14H-LPSO结构形成过程为:低周期性的基面层错→14H-LPSO。可以认为,在本文固溶态Mg97Y1.5Er0.5Ni1合金晶内观察到的细小层片状相(细丝状结构)是14H-LPSO的早期形态。

图10

图10   固溶态Mg97Y1.5Er0.5Ni1合金中基面层错的TEM明场像、HRTEM相和选区电子衍射花样

Fig.10   TEM BF image (a), HRTEM image (b) and SAED pattern on zone axes B=[112¯0] (c) of stacking faults in solution-treated Mg97Y1.5Er0.5Ni alloy


对固溶态3种合金的平均晶粒尺寸、第二相平均宽度和体积分数统计分析结果,如图11所示。对比图4图11可见,与铸态相比,3种固溶态合金的晶粒和LPSO相均发生粗化。但是Mg97Y1Er1Ni1合金的晶粒和LPSO相的尺寸仍然最小,其平均晶粒尺寸和LPSO相平均宽度分别为34.7 μm和7.6 μm。3种固溶态合金中LPSO相的体积分数比铸态均有所降低,但是Mg97Y1Er1Ni1合金中LPSO相的体积分数仍然最高(为38.1%)。

图11

图11   固溶态合金的平均晶粒尺寸、LPSO相平均宽度和LPSO相的体积分数

Fig.11   Average grain size (a), average width of LPSO phase (b) and volume fraction of LPSO phase (c) in solution-treated alloys


图12分别给出了固溶态Mg97Y1.5Er0.5Ni1、Mg97Y1-Er1Ni1和Mg97Y0.5Er1.5Ni1合金的室温拉伸性能。可以看出,固溶态Mg97Y1Er1Ni1合金的拉伸性能最佳,其屈服强度、极限拉伸强度和伸长率分别为128 MPa、229 MPa和8.1%;固溶态Mg97Y0.5Er1.5Ni1合金的拉伸性能最差,其屈服强度、极限拉伸强度和伸长率分别为114 MPa、192 MPa和6.3%。同时,固溶处理后3种合金的屈服强度、极限拉伸强度和伸长率与铸态(图5)相比均有所提高。其原因是,在高温固溶处理过程中Y、Er溶质原子较高的扩散迁移能力使部分LPSO相溶解,Y、Er溶质原子溶入α-Mg基体中形成过饱和固溶体,使晶格发生畸变。晶格畸变阻碍位错运动,使基体强化。同时,Y、Er溶质原子在α-Mg基体内的扩散使其在晶内的分布更加均匀,从而消除或减弱了枝晶偏析,也有利于提高合金的拉伸性能。需要指出的是,与铸态相比固溶态Mg97Y1.5Er0.5Ni1合金的拉伸强度显著提高,可能与其晶内出现的大量纳米尺度的基面层错有关。基面层错的长径比较大,具有较好的纤维强化效果[9]

图12

图12   固溶态合金的室温拉伸性能

Fig.12   Tensile properties of solution-treated alloys tested at room temperature


表4分别列出了本文制备的Mg97Y1Er1Ni1合金、2种四元Mg-RE1-RE2-Zn以及2种三元Mg-RE-Ni合金的室温拉伸性能。可以看出,与其他列出的合金相比,无论铸态还是固溶态(T4)的Mg97Y1Er1Ni1合金其综合室温拉伸性能都比较高。

表4   本文制备的Mg97Y1Er1Ni1合金和其他相关合金的室温拉伸性能

Table 4  Tensile properties of present alloy and some other alloys reported in literatures

Alloys

RE/%,

atomic fraction

UTS / MPaYS / MPaElongationg / %State

Mg97Y1Er1Ni1

Mg97Y1Er1Ni1

Mg96.23Zn0.88Dy2.21Er0.68[26]

Mg96.23Zn0.88Dy2.21Er0.68[26]

Mg97.5Zn0.9Y0.8Gd0.8[13]

Mg97.5Zn0.9Y0.8Gd0.8[13]

Mg98.5Y1Ni0.5[17]

Mg97Gd2Ni1[16]

2

2

2.89

2.89

1.6

1.6

1

2

223

229

150.51

123.29

228.8

210.2

208

203

124

128

84.36

95.79

149

104.6

93

-

8.0

8.1

6.74

7.03

3.2

7.8

8.0

8.8

As-cast

T4

As-cast

T4

As-cast

T4

As-cast

As-cast

新窗口打开| 下载CSV


3 结论

(1) 铸态Mg97Y1.5Er0.5Ni1、Mg97Y1Er1Ni1和Mg97Y0.5-Er1.5Ni1合金均由α-Mg基体和18R-LPSO相组成。Mg97Y1Er1Ni1合金的晶粒最细小,LPSO相的体积分数最高、尺寸最小且分布最为均匀,具有最优的室温拉伸性能。

(2) 在520℃固溶12 h后,Mg97Y1.5Er0.5Ni1、Mg97Y1-Er1Ni1和Mg97Y0.5Er1.5Ni1合金仍然由α-Mg基体和18R-LPSO相组成。在固溶态Mg97Y1.5Er0.5Ni1合金晶内出现基面层错,没有完整的堆垛周期性特征。与铸态相比,3种固溶态合金的室温拉伸性能均有所提高。

参考文献

Sun H, Chen M, Cheng M, et al.

Recrystallization and texture of magnesium alloy sheet during warm rolling based on multi-scale model

[J]. Chin. J. Mater. Res., 2021, 35(5): 339

[本文引用: 1]

孙 贺, 陈 明, 程 明 .

基于多尺度模型的镁合金薄板温轧再结晶和织构

[J]. 材料研究学报, 2021, 35(5): 339

[本文引用: 1]

Wang D J, Zhang M Q, Ji Z S, et al.

Process and properties of graphene reinforced magnesium matrix composites prepared by in-situ method

[J]. Chin. J. Mater. Res., 2021, 35(6): 474

王殿君, 张明秋, 吉泽升 .

原位自生法制备石墨烯增强镁基复合材料的工艺和性能

[J]. 材料研究学报, 2021, 35(6): 474

Liu Y, Kang R, Feng X H, et al.

Microstructure and mechanical properties of Mg-Al-Ca-Mn-Zn wrought magnesium alloy

[J]. Chin. J. Mater. Res., 2022, 36(1): 13

刘 洋, 康 锐, 冯小辉 .

Mg-Al-Ca-Mn-Zn变形镁合金的组织和力学性能

[J]. 材料研究学报, 2022, 36(1): 13

Gu J Q, Tang W N, Xu S W.

Evolution of tensile deformation microstructure of Mg-0.4Zn magnesium alloy extruded sheet

[J]. Chin. J. Mater. Res., 2021, 37(7): 553

[本文引用: 2]

顾佳卿, 唐伟能, 徐世伟.

Mg-0.4Zn镁合金挤压板拉伸变形组织的演变

[J]. 材料研究学报, 2021, 37(7): 553

[本文引用: 2]

Kawamura Y, Hayashi K, Inoue A, et al.

Rapidly solidified powder metallurgy Mg97ZnlY2 alloys with excellent tensile yield strength above 600 MPa

[J]. Mater. Trans. JIM, 2001, 42: 1172

[本文引用: 2]

Abe E, Kawamura Y, Hayashi K, et al.

Long-period ordered structure in a high-strength nanocrystalline Mg-1at% Zn-2at% Y alloy studied by atomic-resolution Z-contrast STEM

[J], Acta Mater., 2002, 50: 3845

DOI      URL     [本文引用: 2]

Luo Z, Zhang S.

High-resolution electron microscopy on the X-Mg12ZnY phase in a high strength Mg-Zn-Zr-Y magnesium alloy

[J]. J. mater. Sci. lett., 2000, 19(9): 813.

DOI      URL     [本文引用: 3]

Chuang W S, Huang J C, Lin P H, et al.

Deformation mechanisms and mechanical properties of (0001) Mg-Zn-Y 18R-LPSO single crystals

[J]. J. Alloy. Compd., 2019, 772: 288

DOI      [本文引用: 3]

A promising Mg-Zn-Y alloy with the long-period stacking ordered (LPSO) second phase has been developed for about twenty years. Because the LPSO phase has the unique 18R crystal structure, particularly for its packing sequence along [0001], as well as it plays an important role in strengthening mechanisms, it is interesting to clarify in terms of mechanical properties and deformation mechanisms. In this study, uniaxial micro-pillar compression tests are conducted on LPSO along the [0001] direction. At the same time, nanoindentation system equipped with the Berkovich tip is used to extract the basic mechanical properties of (0001) plane. The basal dislocations are found to be activated first, causing the bending of the sample. The bending would lead to the shear stress field downward and thus would cause the nucleation and movement of prism dislocations with [0001] Burgers vector. Prism dislocations can form the fatal 45 degrees slip trace inside the micro-pillar and finally go through the whole sample causing fracture. The basal dislocations are found at the Zn6Y8-Mg interface which might be originated from the local strain field between them. (C) 2018 Elsevier B.V.

Hagihara K, Li Z, Yamasaki M, et al.

Strengthening mechanisms acting in extruded Mg-based long-period stacking ordered (LPSO)-phase alloys

[J], Acta Mater., 2019, 163: 226

DOI      [本文引用: 2]

The unusual increase in the strength by extrusion is a unique feature of recently developed Mg alloys containing the LPSO phase. In this study, we first elucidated the detailed mechanisms that induce this drastic strengthening. The dependencies of the deformation behavior of a Mg88Zn4Y7 extruded alloy, which contains similar to 86-vol% LPSO phase, on the temperature, loading orientation, and extrusion ratio were examined. It was found that the yield stress of the alloy is drastically increased by extrusion, but the magnitude of the increase in the yield stress is significantly different depending on the loading orientation. That is, the strengthening of the LPSO phase by extrusion shows a strong anisotropy. By the detailed analyses, this was clarified to be derived from the variation in the deformation mechanisms depending on the loading orientation and extrusion ratio. Basal slip was found to govern the deformation behavior when the loading axis was inclined at a 45 to the extrusion direction, while the predominant deformation mechanism varies from basal slip to the formation of deformation kink bands as the extrusion ratio increased when the loading axis was parallel to the extrusion direction. Moreover, it was clarified in this study that the introduction of a deformation-kink-band boundary during extrusion effectively acts as a strong obstacle to basal slip. That is, "the kink band strengthening" was first quantitatively elucidated, which contributes to the drastic increase in the yield stress of the extruded LPSO-phase alloys in the wide temperature range below 400 degrees C. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd.

Du X H, Duan G S, Hong M, et al.

Effect of V on the microstructure and mechanical properties of Mg-10Er-2Cu alloy with a long period stacking ordered structure

[J]. Mater. Lett., 2014, 122(5): 312

DOI      URL     [本文引用: 1]

Liu H, Xue F, Bai J, et al.

Effect of substitution of 1 at% Ni for Zn on the microstructure and mechanical properties of Mg94Y4Zn2 alloy

[J]. Mater. Sci. Eng. A, 2013, 585: 387

DOI      URL     [本文引用: 2]

Yang K, Zhang J S, Zong X M, et al.

Effect of microalloying with boron on the microstructure and mechanical properties of Mg-Zn-Y-Mn alloy

[J]. Mater Sci.Eng. A, 2016, 669: 340

[本文引用: 2]

Liao H, Kim J, Lee T, et al.

Effect of heat treatment on LPSO morphology and mechanical properties of Mg-Zn-Y-Gd alloys

[J]. J. Magnes. Alloy., 2020, 8: 1120.

DOI      URL     [本文引用: 3]

Zhang L, Huang H, Zhang S, et al.

Microstructure, mechanical properties and tribological behavior of two-phase Mg-Y-Cu alloys with long period stacking ordered phases

[J]. Met. Mater. Int., 2021, 27: 1605

DOI      [本文引用: 3]

Kawamura Y, Yamasaki M.

Formation and mechanical properties of Mg97Zn1RE2 alloys with long-period stacking ordered structure

[J]. Mater Trans., 2007, 48: 2986.

DOI      URL     [本文引用: 3]

Wang D D, Zhang W B, Zong X M, et al.

Abundant long period stacking ordered structure induced by Ni addition into Mg-Gd-Zn alloy

[J]. Mater. Sci. Eng. A, 2014, 9.

[本文引用: 3]

Yang X, Wu S S, S L, et al.

Effects of Ni levels on microstructure and mechanical properties of Mg-Ni-Y alloy reinforced with LPSO structure

[J]. J. Alloy. Compd., 2017, 726:2 76.

DOI      URL     [本文引用: 3]

Zhang L, Zhang S J, Ouyang K X, et al.

Microstructure and mechanical properties of Mg-Er-Cu/Ni/Zn alloy with long period stacking ordered phases

[J]. Adv. Eng. Mater., 2021:2100368.

[本文引用: 5]

Wen K, Du W B, Liu K, et al.

Precipitation behavior of the 14H-LPSO structure in Mg-12Gd-2Er-1Zn-0.6Zr alloy

[J]. Rare Metals, 2016, 5(35): 367

[本文引用: 2]

Wang Y, Zhang F, Wang Y, et al.

Effect of Zn content on the microstructure and mechanical properties of Mg-Gd-Y-Zr alloys

[J]. Mater. Sci. Eng. A, 2019, 745: 149

DOI      URL    

Zhu C, Zhou L, Zheng J, et al.

Cluster on interface of LPSO phase and matrix in Mg-Gd-Y-Ni alloy: Atomic scale insight from HAADF-STEM

[J]. Mater. Lett., 2019, 235: 71

DOI      URL     [本文引用: 1]

Wu A R, Xia C Q.

Study of the microstructure and mechanical properties of Mg-rare earth alloys

[J]. Mater. Des., 2007, 28: 1963

DOI      URL     [本文引用: 1]

Rokhlin L L, Dobatkina T V.

Nikitina N I. Constitution and properties of the ternary magnesium alloys containing two rare-earth metals of different subgroups

[J]. Mater. Sci. Forum. 2003, 419/422: 291

[本文引用: 1]

Fang D R, Zhao S S, Lin X P, et al.

Correlation between microstructure and mechanical properties of columnar crystals in the directionally solidified Mg-Gd-Y-Er alloy

[J]. J. Magnes. Alloy., 2022, 10(3): 743

DOI      URL     [本文引用: 1]

Lu R P, Jiao K, Li N T, et al.

Microstructure and damping properties of LPSO phase dominant Mg-Ni-Y and Mg-Zn-Ni-Y alloys

[J]. J. Magnes. Alloy., .

[本文引用: 2]

Liu X Q, Zhao D S, Ye L L., et al.

Effect of Er contents on the microstructure of long period stacking ordered phase and the corresponding mechanical properties in Mg-Dy-Er-Zn alloys

[J]. Mater. Sci. Eng. A, 2018, 78: 461

[本文引用: 2]

/