Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (9): 706-712    DOI: 10.11901/1005.3093.2022.681
  研究论文 本期目录 | 过刊浏览 |
脉冲激光沉积技术生长铜材碳基保护膜
陆益敏1(), 马丽芳2, 王海1, 奚琳1, 徐曼曼1, 杨春来1
1.安徽工程大学机械工程学院 芜湖 241000
2.中国人民解放军陆军炮兵防空兵学院 高过载弹药制导控制与信息感知实验室 合肥 230031
Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate
LU Yimin1(), MA Lifang2, WANG Hai1, XI Lin1, XU Manman1, YANG Chunlai1
1.School of Mechanical Engineering of Anhui Polytechnic University, Wuhu 241000, China
2.High Overload Ammunition Guidance and Control and Information Perception Laboratory, PLA Army Academy of Artillery and Air Defense, Hefei 230031, China
引用本文:

陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
Yimin LU, Lifang MA, Hai WANG, Lin XI, Manman XU, Chunlai YANG. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. Chinese Journal of Materials Research, 2023, 37(9): 706-712.

全文: PDF(5522 KB)   HTML
摘要: 

用脉冲激光沉积技术制备三种结构的金属铜材碳基保护膜,分析了失效样品剥离面的微结构。结果表明,在室温条件下生长的碳基复合膜,碳化硅层增强了界面间结合力、避免了类金刚石内应力积累导致的脱落。优化的碳基复合膜牢固地附着在金属铜材上,通过了国军标《光学薄膜通用规范(GJB 2485-95)》中附着力和中度摩擦测试。碳基复合膜使金属铜基材样品表面的纳米硬度比铜基材提高了4倍,增强了铜基材的抗划伤能力。

关键词 材料表面与界面碳基复合膜脉冲激光沉积附着特性失效面诊断    
Abstract

Carbon-based coatings, similar to diamond-like film, have lower friction, good corrosion resistance, and other excellent properties, which can be used as protective layers in wide fields. A high adhesive strength of the coating or film on the substrate is the critical requirement for application. However, it is impossible to grow carbon-based layers directly on the most of metals like copper, because they have a high mismatch interface. Based on the former researches and the references, the carbon-based complex coatings with three different structures were designed and grown by pulsed laser deposition. Diamond-like carbon and silicon carbide, the carbon-based materials, were deposited as the functional layer and buffer layer respectively, to make composite coatings. The interface with the weakest bonding force in the designed carbon-based complex coating was found by analyzing the micro-structure of the failure interface in the peeling coating samples. The results of comparative experiments indented that the silicon carbide layer, which played a key role in enhancing the adhesive property of the carbon-based complex coating grown at the room temperature on the metal copper substrate, could increase the bonding force of the interface between the diamond-like carbon functional layer and the metal titanium transition layer, and reduce the invalid problem of the complex coating due to the inner-stress accumulation in the thick diamond-like carbon film. The carbon-based coating of excellent adhesion could successively be prepared on the metal copper substrate, and the products can pass the relative tests regulated in the subsections ‘3.4.1.1 adhesive force’ and ‘3.4.1.3 moderate friction’ in the national military standard of ‘general specifications for optical films (GJB 2485-95)’. Nano-hardness of the coating on the copper substrate increased by 4 times compared with the bare copper, which enhanced the anti-scratch performance.

Key wordssurface and interface in the materials    carbon-based complex coating    pulsed laser deposition    adhesive property    failure interface diagnosis
收稿日期: 2022-12-29     
ZTFLH:  TN340.2  
基金资助:安徽省高校科学研究重点项目(2022AH050982);安徽工程大学引进人才科研启动基金(2022YQQ001);安徽工程大学校立项目(Xjky2022008)
通讯作者: 陆益敏,luyimin_zy@163.com,研究方向为功能薄膜及其应用
Corresponding author: LU Yimin, Tel: 15927643720, E-mail: luyimin_zy@163.com
作者简介: 陆益敏,男,1981年生,博士
Structure IMaterialCu substrate/Ti/SiC/DLC

Thickness / μm

Laserpulses (thousand)

0.3/0.4/1.4

12/30/137

Structure IIMaterialCu substrate/Ti/(DLC/SiC)11/DLC

Thickness / μm

Laser pulses (thousand)

0.3/(0.12/0.03)11/0.12

12/(11.8/2.3)11/11.8

Structure IIIMaterialCu substrate/Ti/SiC/(DLC/SiC)11/DLC

Thickness / μm

Laser pulses (thousand)

0.3/0.4/(0.12/0.03)11/0.12

12/30/(11.8/2.3)11/11.8

表1  多层碳基复合膜的结构设计
图1  靶面上的光斑形状
图2  碳基复合膜结构I表面的皱褶
图3  碳基复合膜结构II的剥离面及其XPS诊断结果
图4  碳基复合膜结构III表面的XPS测试结果
图5  碳基膜和碳基复合膜的拉曼光谱
图6  碳基复合膜结构III的纳米压痕测试结果
1 Xue Q J, Wang L J. Thin Film Materials of Carbon-based Diamond-like Carbon [M]. Beijing: Science Press, 2012
1 薛群基, 王立平. 类金刚石碳基薄膜材料 [M]. 北京: 科学出版社, 2012
2 Cui L, Sun L L, Guo P, et al. Effect of deposition time on structure and performance of diamond-like carbon films on PEEK [J]. Chin. J. Mater. Res., 2022, 36(11): 801
doi: 10.11901/1005.3093.2021.315
2 崔 丽, 孙丽丽, 郭 鹏 等. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响 [J]. 材料研究学报, 2022, 36(11): 801
3 Maerten T, Oltra R, Jaoul C, et al. Investigation of diamond-like carbon coated steel corrosion: enhancing the optical detection of defects by a controlled electrochemical activation [J]. Surf. Coat. Technol., 2019, 363: 344
doi: 10.1016/j.surfcoat.2019.02.050
4 Zhou Y, Kong C C, Li X W, et al. Effect of Ti/Al transition layer on properties of Co-doped diamond-like carbon films [J]. Surf. Technol., 2019, 48(1): 268
4 周 永, 孔翠翠, 李晓伟 等. Ti/Al过渡层对共掺杂类金刚石薄膜性能的影响 [J]. 表面技术, 2019, 48(1): 268
5 Tillmann W, Dias N F L, Stangier D, et al. Tribo-mechanical properties and adhesion behavior of DLC coatings sputtered onto 36NiCrMo16 produced by selective laser melting [J]. Surf. Coat. Technol., 2020, 394: 125748
doi: 10.1016/j.surfcoat.2020.125748
6 Kabir M S, Zhou Z F, Xie Z H, et al. Designing multilayer diamond like carbon coatings for improved mechanical properties [J]. J. Mater. Sci. Technol., 2021, 65: 108
doi: 10.1016/j.jmst.2020.04.077
7 Wang K L, Zhou H, Zhang K F, et al. Effects of Ti interlayer on adhesion property of DLC films: a first principle study [J]. Diam. Relat. Mater., 2021, 111: 108188
doi: 10.1016/j.diamond.2020.108188
8 Shao W, Zhou Y F, Rao L X, et al. Effect of Cr doping on interface properties of DLC/CrN composite coatings: first-principles study [J]. Diam. Relat. Mater., 2022, 121: 108721
doi: 10.1016/j.diamond.2021.108721
9 Zhou Y F, Li L L, Hu T S, et al. Role of TiC nanocrystalline and interface of TiC and amorphous carbon on corrosion mechanism of titanium doped diamond-like carbon films: exploration by experimental and first principle calculation [J]. Appl. Surf. Sci., 2021, 542: 148740
doi: 10.1016/j.apsusc.2020.148740
10 Sui X D, Liu J Y, Zhang S T, et al. Microstructure, mechanical and tribological characterization of CrN/DLC/Cr-DLC multilayer coating with improved adhesive wear resistance [J]. Appl. Surf. Sci., 2018, 439: 24
doi: 10.1016/j.apsusc.2017.12.266
11 Sui X D, Wang X Y, Zhang S T, et al. Nano-twisted double helix carbon debris improves the wear resistance of ultra-thick diamond-like carbon coatings [J]. Adv. Mater. Interfaces, 2020, 7(20): 2000857
doi: 10.1002/admi.v7.20
12 Zhou J. The interface design and properties of diamond-like carbon films with high adhesion strength deposited on aluminum ally [D]. Shanghai: Shanghai University, 2020
12 周 佳. 铝合金/类金刚石薄膜的强结合界面设计与性能研究 [D]. 上海: 上海大学, 2020
13 Yang F E, Gao M B, Zhang J, et al. Preparation and tribological properties of diamond-like-carbon/CN x multilayer films with symmetrical nitrogen-content gradient [J]. J. Chin. Ceram. Soc., 2021, 49(10): 2154
13 杨芳儿, 高蔓斌, 张 继 等. 类金刚石/对称N-梯度CN x 多层膜的制备及摩擦性能 [J]. 硅酸盐学报, 2021, 49(10): 2154
14 Zheng X H, Liu T, Yang S Y, et al. Microstructure and tribological behavior of magnetron sputtered WS x /W/DLC/W multilayer films [J]. Rare Met. Mater. Eng., 2020, 49(4): 1295
14 郑晓华, 刘 涛, 杨烁妍 等. 磁控溅射WS x /W/DLC/W 多层膜的微观结构及摩擦学性能 [J]. 稀有金属材料与工程, 2020, 49(4): 1295
15 Li F Q, Lin S S, Lin K S, et al. Preparation of CrN/DLC composite thin film and study on its tribological property [J]. Electroplat. Finish., 2017, 36(1): 25
15 李福球, 林松盛, 林凯生 等. CrN/DLC复合薄膜的制备及其摩擦学性能研究 [J]. 电镀与涂饰, 2017, 36(1): 25
16 Cao H S, Ye X, Li H, et al. Microstructure, mechanical and tribological properties of multilayer Ti-DLC thick films on Al alloys by filtered cathodic vacuum arc technology [J]. Mater. Des., 2021, 198: 109320
doi: 10.1016/j.matdes.2020.109320
17 Harigai T, Tamekuni K, Iijima Y, et al. Wear-resistive and electrically conductive nitrogen-containing DLC film consisting of ultra-thin multilayers prepared by using filtered arc deposition [J]. Jpn. J. Appl. Phys., 2019, 58(SE): SEED05
doi: 10.7567/1347-4065/ab1472
18 Wu Y X, Liu Y L, Liu Y, et al. Structure and tribological properties of Si/a-C:H(Ag) multilayer film in stimulated body fluid [J]. Chin. Phys. B, 2020, 29(11): 116101
doi: 10.1088/1674-1056/ab9c10
19 Narguess N, Penkovc O V, Kim D E. Superior surface protection governed by optimized interface characteristics in WC/DLC multilayer coating [J]. Surf. Coat. Technol., 2020, 385: 125446
doi: 10.1016/j.surfcoat.2020.125446
20 Penkov O V, Khadem M, Lee J S, et al. Highly durable and biocompatible periodical Si/DLC nanocomposite coatings [J]. Nanoscale, 2018, 10: 4852
doi: 10.1039/c7nr06762c pmid: 29473931
21 Li A, Chen Q C, Wu G Z, et al. Effect of the variation of film thickness on the properties of multilayered Si-doped diamond-like carbon films deposited on SUS 304, Al and Cu substrates [J]. J. Mater. Eng. Perform., 2020, 29(12): 8473
doi: 10.1007/s11665-020-05310-x
22 Sun A L, Qin W Y, Liu Y, et al. Effect of titanium plating on cemented carbide substrate tointerfacial transition layer and properties of PcBN composite sheet [J]. Superhard Mater. Eng., 2021, 33(4): 1
22 孙爱玲, 覃伟源, 刘 洋 等. 硬质合金基底镀钛对PcBN复合片界面过渡层及性能的影响 [J]. 超硬材料工程, 2021, 33(4): 1
23 Lee Y B, Kim B Y, Park H W. Oxygen-scavenging effects of added Ti layer in the TiN gate of metal-ferroelectric-insulator-semiconductor capacitor with Al-doped HfO2 ferroelectric film [J]. Adv. Electron. Mater., 2022, 8(11): 2200310
doi: 10.1002/aelm.v8.11
24 Chinh V D, Broggi A, Di Palma L, et al. XPS spectra analysis of Ti2+, Ti3+ ions and dye photodegradation evaluation of titania-silica mixed oxide nanoparticles [J]. J. Electron. Mater., 2018, 47: 2215
doi: 10.1007/s11664-017-6036-1
25 Wei H S, Xie K, Zhang J, et al. In situ growth of NixCu1-x alloy nanocatalysts on redox-reversible rutile (Nb, Ti)O4 towards high-temperature carbon dioxide electrolysis [J]. Sci. Rep., 2014, 4: 5156
doi: 10.1038/srep05156
26 Lei L, Bolzoni L, Yang F. High thermal conductivity and strong interface bonding of a hot-forged Cu/Ti-coated diamond composite [J]. Carbon, 2020, 168: 553
doi: 10.1016/j.carbon.2020.07.001
27 Hao Z K, Chen Q, Dai W R, et al. Oxygen-deficient blue TiO2 for ultrastable and fast lithium storage [J]. Adv. Energy Mater., 2020, 10: 1903107
doi: 10.1002/aenm.v10.10
28 Shim J W, Bae I H, Jeong M H, et al. Effects of a titanium dioxide thin film for improving the biocompatibility of diamond-like coated coronary stents [J]. Met. Mater. Int., 2020, 26(10): 1455
doi: 10.1007/s12540-019-00424-x
29 Li X W, Li L, Zhang D, et al. Ab initio study of interfacial structure transformation of amorphous carbon catalyzed by Ti, Cr, and W transition layers [J]. ACS Appl. Mater. Interfaces, 2017, 9(47): 41115
doi: 10.1021/acsami.7b12179
30 Neuville S, Matthews A. A perspective on the optimisation of hard carbon and related coatings for engineering applications [J]. Thin Solid Films, 2007, 515(17): 6619
doi: 10.1016/j.tsf.2007.02.011
31 Jiang T. Research and development status and trend of the Ti-Si intermetallics compounds/ceramics matrix composites [J]. China Ceram. Ind., 2022, 29(5): 45
31 江 涛. Ti-Si金属间化合物/陶瓷复合材料的研究发展现状与发展趋势 [J]. 中国陶瓷工业, 2022, 29(5): 45
32 Lin Q J, Yang S M, Wang C Y, et al. Multifractal analysis for Cu/Ti bilayer thin films [J]. Surf. Interface Anal., 2013, 45(8): 1223
doi: 10.1002/sia.v45.8
33 Xue H T, Wei X, Guo W B, et al. First principle calculation of the binding mechanism between Ti and SiO2 [J]. Trans. China Weld. Inst., 2020, 41(1): 67
33 薛海涛, 魏 鑫, 郭卫兵 等. 活性元素Ti和SiO2界面结合机制的第一性原理计算 [J]. 焊接学报, 2020, 41(1): 67
doi: 10.12073/j.hjxb.20190712001
34 Kuntani Y, Goto D, Maekawa K, et al. Mechanical shock-induced self-propagating exothermic reaction in Ti/Si multilayer nanofilms for low-power reactive bonding [J]. Jpn. J. Appl. Phys., 2020, 59(SI): SIIL09
doi: 10.35848/1347-4065/ab827f
35 Wang J, Liu G C, Wang L D, et al. Studies of diamond-like carbon(DLC) films deposited on stainless steel substrate with Si/SiC intermediate layers [J]. Chin. Phys. B, 2008, 17(8): 3108
doi: 10.1088/1674-1056/17/8/057
36 Xu P, Wang Y, Cao X Q, et al. The tribological properties of DLC/SiC and DLC/Si3N4 under different relative humidity: the transition from abrasive wear to tribo-chemical reaction [J]. Ceram. Int., 2021, 47: 3901
doi: 10.1016/j.ceramint.2020.09.252
37 Gao J, Wang Y, Wu H H, et al. Construction of a sp3/sp2 carbon interface in 3D N-doped nanocarbons for the oxygen reduction reaction [J]. Angew. Chem. Int. Ed., 2019, 58(42): 15089
doi: 10.1002/anie.v58.42
38 Nakashima S I, Mitani T, Tomobe M, et al. Raman characterization of damaged layers of 4H-SiC induced by scratching [J]. AIP Adv., 2016, 6(1): 015207
[1] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[3] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[4] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[5] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[6] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[7] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[8] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[9] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[10] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[11] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[12] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.
[13] 卢壹梁, 杜瑶, 王成, 辛丽, 朱圣龙, 王福会. 纳米Al2O3TiO2改性有机硅涂层对304不锈钢高温氧化行为的影响[J]. 材料研究学报, 2021, 35(6): 458-466.
[14] 张会臣, 漆雪莲. 跑合过程引发钛合金水基润滑的超低摩擦特性[J]. 材料研究学报, 2021, 35(5): 349-356.
[15] 刘福广, 陈胜军, 潘红根, 董鹏, 马英民, 黄杰, 杨二娟, 米紫昊, 王艳松, 雒晓涛. 热喷涂复合结构MCrAlY/8YSZ热障涂层的抗剥落能力[J]. 材料研究学报, 2021, 35(4): 313-320.