Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (2): 89-94    DOI: 10.11901/1005.3093.2021.664
  研究论文 本期目录 | 过刊浏览 |
热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能
马逸舟1, 赵秋莹1, 杨路2, 裘进浩1()
1.南京航空航天大学 机械结构力学及控制国家重点实验室 南京 210016
2.河海大学力学与材料学院 南京 210098
Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film
MA Yizhou1, ZHAO Qiuying1, YANG Lu2, QIU Jinhao1()
1.State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2.College of Mechanics and Materials, Hohai University, Nanjing 210098, China
引用本文:

马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
Yizhou MA, Qiuying ZHAO, Lu YANG, Jinhao QIU. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. Chinese Journal of Materials Research, 2023, 37(2): 89-94.

全文: PDF(5817 KB)   HTML
摘要: 

将聚酰亚胺(PI)与PVDF分别溶于N,N-二甲基甲酰胺(DMF),共混后滴入酒精与纯水的混合液中析出絮状物,将絮状物收集干燥后热压制备出热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜。使用SEM、XRD、DSC和介电、铁电测试等手段对其表征,研究了这种材料的相容性、结晶行为和储能性能。结果表明:这种PI/PVDF全有机复合储能薄膜结合紧密,分布均匀。PI的加入促进了PVDF中γ相结构的生成,对PVDF薄膜击穿性能的影响较小,明显提高了全有机薄膜的储能性能。PI的添加量为5%的复合薄膜,在300 MV·m-1电场下可释放储能密度6.52 J·cm-3,约为相同条件下纯PVDF薄膜的1.4倍。

关键词 有机高分子材料储能性能热压法聚酰亚胺聚偏氟乙烯    
Abstract

Polyimide (PI) and polyvinylidene fluoride (PVDF) were dissolved in N, N-dimethylformamide (DMF) separately, and the two solutions were blended, then the blending was dropped gradually into a mixture of alcohol and pure water to generate precipitated floccules. Finally, the floccule was collected and dried, then hot-pressed to prepare the all-organic composite film of thermoplastic polyimide/polyvinylidene fluoride. The compatibility, crystallization behavior, and energy storage performance of the composite film were characterized by means of SEM, XRD, DSC, dielectric and ferroelectric tests. It follows that the PI/PVDF film prepared by this method is compact and uniform with only few voids. The addition of PI promotes the formation of γ-phase, but has little effect on the breakdown performance of PVDF film, while obviously improves its energy storage performance. When the addition amount of PI is 5%, a high energy storage density of 6.52 J·cm-3 can be generated by an electric field of 300 MV·m-1, which is about 1.4 times that of pure PVDF film in the same condition.

Key wordsorganic polymer materials    energy storage    hot-pressing    PI    PVDF
收稿日期: 2021-12-02     
ZTFLH:  TB332  
基金资助:国家重点研发计划(2021YFB3400100)
作者简介: 马逸舟,男,1997年生,硕士生
图1  PI/PVDF复合薄膜的制备流程
图2  PI/PVDF复合薄膜截面的SEM形貌和(f-i)20/80组分的SEM元素映射图
图3  PI/PVDF复合薄膜的XRD谱
图4  PI/PVDF复合薄膜的DSC曲线和结晶度
图5  PI/PVDF复合薄膜的介电和铁电性能
1 Chi Q G, Yin C, Zhang T D, et al. Study on energy storage properties of PMMA/PVDF based composites filled with core-shell nanofibers [J]. Proc. Chin. Soc. Electrical Eng., 2021, 41(12): 4333
1 迟庆国, 殷 超, 张天栋 等. 核壳结构纳米纤维掺杂PMMA/PVDF基复合介质的储能特性研究 [J]. 中国电机工程学报, 2021, 41(12): 4333
2 Yang M Z, Jiang J Y, Shen Y. Recent progress in dielectric energy storage materials with high energy density [J]. J. Chin. Cerami. Soc., 2021, 49(7): 1249
2 杨敏铮, 江建勇, 沈 洋. 高能量密度介电储能材料研究进展 [J]. 硅酸盐学报, 2021, 49(7): 1249
3 Wang Z, Kong M L, Yi Z H, et al. Study on energy storage performance of ternary TiO2/MXene/PVDF nanocomposite films enhanced by adding low concentration of MXene [J]. J. Shaanxi Univ. Sci. Technol., 2021, 39(02): 112
3 王 卓, 孔梦蕾, 易志辉 等. 低浓度MXene填充增强三元TiO2/MXene/PVDF纳米复合膜的储能性能研究 [J]. 陕西科技大学学报, 2021, 39(02): 112
4 Zhang H, Heng T T, Fang Z G, et al. High-energy-density ceramic/PVDF-based nanocomposites dielectrics [J]. Acta Mater. Compos. Sin., 2021, 38(7): 2107
4 张 慧, 衡婷婷, 房正刚 等. 高储能陶瓷/PVDF基复合电介质材料的研究进展 [J]. 复合材料学报, 2021, 38(7): 2107
5 Wu L Y, Wu Kai, Liu D Y, et al. Largely enhanced energy storage density of poly(vinylidene fluoride) nanocomposites based on surface hydroxylation of boron nitride nanosheets [J]. J. Mater. Chem. A, 2018, 6: 7573
doi: 10.1039/C8TA01294F
6 Zhang X, Shen Y, Zhang Q H, et al. Ultrahigh Energy Density of Polymer Nanocomposites Containing BaTiO3@TiO2 Nanofibers by Atomic-Scale Interface Engineering [J]. Adv. Mater., 2015, 27: 819
doi: 10.1002/adma.201404101
7 Ma Y, Tong W S, Wang W J, et al. Montmorillonite/PVDF-HFP-based energy conversion and storage films with enhanced piezoelectric and dielectric properties [J]. Compos. Sci. Technol., 2018, 168: 397
doi: 10.1016/j.compscitech.2018.10.009
8 Li W J, Li J J, Zhang Z C. Energy Storage Properties of Poly(vinylidene fluoride)-based Copolymers [J]. Polymer B., 2011, (12): 56
8 李文静, 李俊杰, 张志成. 聚偏氟乙烯基含氟聚合物介电和储能研究进展 [J]. 高分子通报, 2011, (12): 56
9 Yang C Y, Sun M Q, Wang X, et al. A Novel Flexible Supercapacitor Based on Cross-Linked PVDF-HFP Porous Organogel Electrolyte and Carbon Nanotube Paper@π-Conjugated Polymer Film Electrodes [J]. ACS Sustain. Chem. Eng., 2015, 3: 2067
doi: 10.1021/acssuschemeng.5b00334
10 Han Y X, Shen M X, Xu Y P, et al. Synchronously promoted discharged energy density and discharged efficiency in PVDF films through a linear dielectric polymer PP blending approach [J]. J. Mater. Sci.: Mater. Electron., 2021, 32: 6249
doi: 10.1007/s10854-021-05340-8
11 Dong J F, Deng X L, Niu Y J, et al. Research progress of polymer based dielectrics for high-temperature capacitor energy storage [J]. Acta Phy. Sin., 2020, 69: 217701
11 董久锋, 邓星磊, 牛玉娟 等. 面向高温介电储能应用的聚合物基电介质材料研究进展 [J]. 物理学报, 2020, 69: 217701
12 Chen X Z. Manipulating microstructures and electric properties in PVDF-based multifunctional ferroelectric polymers [D]. Nanjing: Nanjing University, 2013
12 陈相仲. 多功能铁电共聚物微结构的调控及其电性能的调制 [D]. 南京: 南京大学, 2013
13 Yuan C, Zhou Y, Zhu Y J, et al. Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage [J]. Nat. Commun., 2020, 11: 3919
doi: 10.1038/s41467-020-17760-x pmid: 32764558
14 Yang L, Zhao Q Y, Chen K N, et al. Simultaneously realizing ultra-high energy density and discharge efficiency in PVDF composites loaded with highly aligned hollow MnO2 microspheres [J]. Compos. Part A-Appl. S., 2020, 132: 105820
doi: 10.1016/j.compositesa.2020.105820
15 Wang J, Liu S H, Chen C Q, et al. Interface modification and energy storage properties of barium titanate-based/polyvinylidene fluoride composite [J]. Acta Phys. Sin., 2020, 69: 217702
doi: 10.7498/aps.69.20201031
15 王 娇, 刘少辉, 陈长青 等. 钛酸钡基/聚偏氟乙烯复合介质材料的界面改性与储能性能 [J]. 物理学报, 2020, 69: 217702
16 Li Y, Liu X F, Wei M, et al. Preparation and properties of polyphenylthiourea-poly(vinylidenefluride) composites modified by do-pamine [J]. Acta Mater. Compos. Sin., 2019, 36(8): 1787
16 李 圆, 刘晓芳, 魏 铭 等. 多巴胺改性聚苯硫脲与聚偏氟乙烯共混复合材料的制备与性能 [J]. 复合材料学报, 2019, 36(8): 1787
17 Mao X. Study on preparation and dielectric properties of polyimide-based all-organic composite materials [D]. Chengdu: University of Electronic Science and Technology of China, 2020
17 毛 欣. 聚酰亚胺基全有机复合材料的制备及其介电性能研究 [D]. 成都: 电子科技大学, 2020
18 Yang L, Bao H, Dai Y, et al. Poly(acrylonitrile butadiene styrene)/poly(vinylidene fluoride) binary blends films with superior breakdown strength and discharge efficiency [J]. J. Mater. Sci.: Mater. Electron., 2021, 32(13): 17230
doi: 10.1007/s10854-021-06200-1
19 Luo H, Zhou X F, Ellingford C, et al. Interface design for high energy density polymer nanocomposites [J]. Chem. Soc. Rev., 2019, 48: 4424
doi: 10.1039/c9cs00043g pmid: 31270524
20 Martins P, Lopes A C, Lanceros-Mendez S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications [J]. Prog. Polym. Sci., 2014, 39: 683
doi: 10.1016/j.progpolymsci.2013.07.006
21 Zhu L. Exploring strategies for high dielectric constant and low loss polymer dielectrics [J]. J. Phys. Chem. Lett., 2014, 5: 3677
doi: 10.1021/jz501831q pmid: 26278736
22 Salimi A, Yousefi A A. FTIR studies of β-phase crystal formation in stretched PVDF films [J]. Polym. Test., 2003, 22 :699
doi: 10.1016/S0142-9418(03)00003-5
23 Rinaldo G J. Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions [J]. J. Appl. Polym. Sci., 2006, 100: 3272
doi: 10.1002/app.23137
24 Yang L. The fabrication and electric properties of poly(vinylidene fluoride)-based ferroelectric composites [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017
24 杨 路. 聚偏氟乙烯基铁电复合材料的制备及其电性能研究 [D]. 南京: 南京航空航天大学, 2017
25 Zhao Q Y, Yang L, Peng Q R, et al. Achieving superior energy density in ferroelectric P(VDF-HFP) through the employment of dopamine-modified MOFs [J]. Compos. Sci. Technol., 2021, 201: 108520
doi: 10.1016/j.compscitech.2020.108520
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[4] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[5] 朱海勇, 张伟. 锰掺杂和氧化铌种子层对铌酸钾钠薄膜电性能的影响[J]. 材料研究学报, 2022, 36(12): 945-950.
[6] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[8] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[9] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[10] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[11] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[12] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[13] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.
[14] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10): 752-760.
[15] 张翠歌, 胡良, 卢祖新, 周佳慧. 基于海藻酸自组装胶体粒子的制备及其乳化性能[J]. 材料研究学报, 2021, 35(10): 761-768.