Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (12): 919-925    DOI: 10.11901/1005.3093.2021.395
  研究论文 本期目录 | 过刊浏览 |
热处理对Ti-6Mo-5V-3Al-2Fe-2Zr合金拉伸性能的影响
刘知多1, 张浩宇1(), 程军2, 周舸1, 张兴君3, 陈立佳1
1.沈阳工业大学材料科学与工程学院 沈阳 110870
2.西北有色金属研究院 陕西省医用金属材料重点实验室 西安 710016
3.辽宁北方精密设备有限公司沈阳分公司 沈阳 110020
Effect of Heat Treatment on Tensile Property of Ti-6Mo-5V-3Al-2Fe-2Zr Alloy
LIU Zhiduo1, ZHANG Haoyu1(), CHENG Jun2, ZHOU Ge1, ZHANG Xingjun3, CHEN Lijia1
1.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2.Northwest Institute for Non-ferrous Metal Research, Shaanxi Key Laboratory of Biomedical Metal Materials, Xi'an 710016, China
3.Liaoning North Precision Equipment Co. Ltd., Shenyang Branch, Shenyang 110020, China
引用本文:

刘知多, 张浩宇, 程军, 周舸, 张兴君, 陈立佳. 热处理对Ti-6Mo-5V-3Al-2Fe-2Zr合金拉伸性能的影响[J]. 材料研究学报, 2022, 36(12): 919-925.
Zhiduo LIU, Haoyu ZHANG, Jun CHENG, Ge ZHOU, Xingjun ZHANG, Lijia CHEN. Effect of Heat Treatment on Tensile Property of Ti-6Mo-5V-3Al-2Fe-2Zr Alloy[J]. Chinese Journal of Materials Research, 2022, 36(12): 919-925.

全文: PDF(2492 KB)   HTML
摘要: 

研究了固溶+单级时效处理、固溶+双级时效处理、固溶+随炉冷却处理对新型亚稳β钛合金Ti-6Mo-5V-3Al-2Fe-2Zr的显微组织和拉伸性能的影响。结果表明:与固溶+单级时效处理相比,固溶+双级时效处理析出的晶内次生α相间距减小和体积分数增大而使合金的强度提高。两种热处理都使合金中生成连续的晶界α相,导致合金的塑性降低;与上述两种热处理相比,固溶+随炉冷却处理使合金中析出的晶内次生α相的间距明显减小且沿晶界生成向晶内生长的αwgb相,使合金的强度和塑性显著提高,其抗拉强度达到1421 MPa,断后伸长率为7.7%;与次生α相的体积分数相比,其间距是影响合金强度的主要因素。随着次生α相间距的减小,合金的强度提高。

关键词 金属材料亚稳β钛合金随炉冷却次生α拉伸性能    
Abstract

The effect of three type of heat treatments on the microstructure and tensile properties of a novel metastable β-titanium alloy Ti-6Mo-5V-3Al-2Fe-2Zr was investigated, namely solution and single-stage aging, solution and two-stage aging, as well as solution and furnace cooling. The results show that: compared with the solution and single-stage aging treatment, the strength of the alloy was improved with the decrease of the spacing of secondary α phase precipitated within grains and the increase of its volume fraction by solution and two-stage aging treatment. Continuous α phase formed at grain boundary resulted by the above two heat treatment processes, which leading to poor plasticity of the alloy. Compared with the above two heat treatment processes, the heat treatment of solid solution and furnace cooling could induce obviously the decrease of the spacing of the intracrystalline secondary α phase precipitated, thus increase the amount of αwgb phase formed along the grain boundary and grew into the grain, thereby increase significantly the strength and plasticity of the alloy i.e., the tensile strength of the alloy reaches 1421 MPa, and the fracture elongation is 7.7%. Relative to the volume fraction of the secondary α phase, the spacing is the main factor affecting the strength of the alloy. With the decrease of the spacing of the secondary α phase, the alloy strength increases.

Key wordsmetallic materials    metastable β titanium alloy    furnace cooling    secondary α phase    tensile property
收稿日期: 2021-07-05     
ZTFLH:  TG146.2+3  
基金资助:辽宁省“揭榜挂帅”科技攻关项目(2021JH1/10400069);辽宁省教育厅青年科技人才“育苗”项目(LQGD2020012)
作者简介: 刘知多,男,1996年生,硕士生
图1  合金的热处理工艺
图2  热处理前合金的EBSD图像
图3  不同热处理后合金的显微组织
图4  热处理后合金的EBSD图像
Heat treatmentφ(αs)/%λ/nm
HT134.888.75
HT240.364.85
HT337.547.15
表1  热处理工艺对αs相体积分数和αi相平均间距的影响
Heat treatmentRp0.2/MPaSt.devRm/MPaSt.devA/%St.devPsp/GPa%
Before HT7849891109.10.228.11
HT11099221196265.10.176.10
HT21256191352214.80.215.68
HT31324131421117.70.1310.94
表2  热处理对合金拉伸性能的影响
图5  不同热处理后试样的拉伸断口的形貌

Heat

treatment

Rp0.2,exp

/MPa

Rν+Rss+Rgb

/MPa

Rpcpt,exp

/MPa

HT11099784315
HT21256784472
HT31324784540
表3  不同热处理后合金中次生α相的析出强化影响量
图6  Rpcpt,exp与φ(αs )和λ的关系
图7  Rp0.2与λ-1/2的关系
1 Sun H Y, Zhao J, Liu Y A, et al. Effect of C addition on microstructure and mechanical properties of Ti-V-Cr burn resistant titanium alloys [J]. Chin. J. Mater. Res., 2019, 33: 537
doi: 10.11901/1005.3093.2019.090
1 孙欢迎, 赵 军, 刘翊安 等. C含量对Ti-V-Cr系阻燃钛合金微观组织和力学性能的影响 [J]. 材料研究学报, 2019, 33: 537
doi: 10.11901/1005.3093.2019.090
2 Wu X Y, Chen Z Y, Cheng C, et al. Effects of heat treatment on microstructure, texture and tensile properties of Ti65 alloy [J]. Chin. J. Mater. Res., 2019, 33: 785
doi: 10.11901/1005.3093.2019.110
2 吴汐玥, 陈志勇, 程 超 等. 热处理对Ti65钛合金板材的显微组织、织构及拉伸性能的影响 [J]. 材料研究学报, 2019, 33: 785
doi: 10.11901/1005.3093.2019.110
3 Qin Q H, Peng H B, Fan Q C, et al. Effect of second phase precipitation on martensitic transformation and hardness in highly Ni-rich NiTi alloys [J]. J. Alloys Compd., 2018, 739: 873
doi: 10.1016/j.jallcom.2017.12.128
4 Ouyang D L, Lu S Q, Cui X, et al. Kinetics of dynamic recrystallization of TB6 Ti-alloy during hot compressive deformation at temperatures of β-phase range [J]. Chin. J. Mater. Res., 2019, 33: 918
4 欧阳德来, 鲁世强, 崔 霞 等. TB6钛合金β区变形的动态再结晶动力学 [J]. 材料研究学报, 2019, 33: 918
5 Liu Y Y, Zhang L, Shi X N, et al. High cycle fatigue properties and fracture behavior of Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy [J]. Rare Met. Mater. Eng., 2018, 47: 3666
doi: 10.1016/S1875-5372(19)30015-3
6 Wang X M, Zhang S Q, Yuan Z Y, et al. Effect of heat treatment on mechanical properties of Ti-3Al-8V-6Cr-4Mo-4Zr alloy [J]. Chin. J. Mater. Res., 2017, 31: 409
doi: 10.11901/1005.3093.2016.267
6 王雪萌, 张思倩, 袁子尧 等. 时效处理对Ti-3Al-8V-6Cr-4Mo-4Zr合金力学性能的影响 [J]. 材料研究学报, 2017, 31: 409
doi: 10.11901/1005.3093.2016.267
7 Wang X Y, Yang J R, Zhang K R, et al. Atomic-scale observations of B2→ω-related phases transition in high-Nb containing TiAl alloy [J]. Mater. Charact., 2017, 130: 135
doi: 10.1016/j.matchar.2017.06.003
8 Wang G Q, Zhao Z B, Yu B B, et al. Effect of heat treatment process on microstructure and mechanical properties of titanium alloy Ti6246 [J]. Chin. J. Mater. Res., 2017, 31: 352
doi: 10.11901/1005.3093.2016.621
8 王国强, 赵子博, 于冰冰 等. 热处理工艺对Ti6246钛合金组织与力学性能的影响 [J]. 材料研究学报, 2017, 31: 352
doi: 10.11901/1005.3093.2016.621
9 Wang P Y, Zhang H Y, Zhang Z P, et al. Effect of solution temperature on microstructure and tensile properties of metastable β-Ti alloy Ti-4Mo-6Cr-3Al-2Sn [J]. Chin. J. Mater. Res., 2020, 34: 473
9 王鹏宇, 张浩宇, 张志鹏 等. 固溶温度对亚稳β钛合金Ti-4Mo-6Cr-3Al-2Sn的组织和拉伸性能的影响 [J]. 材料研究学报, 2020, 34: 473
10 Fan J K, Li J S, Kou H C, et al. Microstructure and mechanical property correlation and property optimization of a near β titanium alloy Ti-7333 [J]. J. Alloys Compd., 2016, 682: 517
doi: 10.1016/j.jallcom.2016.04.303
11 Li C L, Mi X J, Ye W J, et al. Microstructural evolution and age hardening behavior of a new metastable beta Ti-2Al-9.2Mo-2Fe alloy [J]. Mat. Sci. Eng., 2015, 645A: 225
12 Zheng Y F, Williams R E A, Sosa J M, et al. The indirect influence of the ω phase on the degree of refinement of distributions of the α phase in metastable β-Titanium alloys [J]. Acta Mater., 2016, 103: 165
doi: 10.1016/j.actamat.2015.09.053
13 Ma Q, Cao D. Effect of double aging treatment on microstructure and mechanical property of TB8 titanium alloy [J]. Trans. Mater. Heat Treat., 2017, 38(10): 41
13 马 权, 曹 迪. 双级时效处理对TB8合金组织和性能的影响 [J]. 材料热处理学报, 2017, 38(10): 41
14 Zhou W, Ge P, Zhao Y Q, et al. Evolution of primary α phase morphology and mechanical properties of a novel high-strength titanium alloy during heat treatment [J]. Rare Met. Mater. Eng., 2017, 46: 2852
doi: 10.1016/S1875-5372(18)30019-5
15 Sun S Y, Deng C. Accurate calculation of α+β/β phase transition of titanium alloys based on binary phase diagrams [J]. Titanium Industry Progress, 2011, 28(3): 21
15 孙书英, 邓 超. 基于二元相图精确计算钛合金α+β/β相变点 [J]. 钛工业进展, 2011, 28(3): 21
16 Xu Y F, Wen J, Xiao Y F, et al. Effects of duplex aging on microstructure and mechanical properties of Ti-25Nb-10Ta-1Zr-0.2Fe alloy [J]. Chin. J. Nonferrous Met., 2016, 26: 1912
doi: 10.1016/S1003-6326(16)64307-8
16 许艳飞, 文 璟, 肖逸锋 等. 双级时效对Ti-25Nb-10Ta-1Zr-0. 2Fe医用β钛合金显微组织与力学性能的影响 [J]. 中国有色金属学报, 2016, 26: 1912
17 Wen J H, Ge P, Yang G J, et al. Effect of heat treatment process on microstructure and tensile properties of Ti-1300 alloy [J]. Rare Met. Mater. Eng., 2009, 38: 1490
17 汶建宏, 葛 鹏, 杨冠军 等. 热处理工艺对Ti-1300合金的组织和拉伸性能的影响 [J]. 稀有金属材料与工程, 2009, 38: 1490
18 Zheng Y F, Williams R E A, Wang D, et al. Role of ω phase in the formation of extremely refined intragranular α precipitates in metastable β-titanium alloys [J]. Acta Mater., 2016, 103: 850
doi: 10.1016/j.actamat.2015.11.020
19 Li P, Yuan B G, Xue K M, et al. Microstructure and properties of hydrogenated TB8 alloy [J]. Rare Met., 2017, 36: 242
doi: 10.1007/s12598-014-0260-0
20 Li T, Kent D, Sha G, et al. The role of ω in the precipitation of α in near-β Ti alloys [J]. Scr. Mater., 2016, 117: 92
doi: 10.1016/j.scriptamat.2016.02.026
21 Zhang H Y, Wang C, Zhang S Q, et al. Evolution of secondary α phase during aging treatment in novel near β Ti-6Mo-5V-3Al-2Fe alloy [J]. Materials (Basel), 2018, 11: 2283
doi: 10.3390/ma11112283
22 He T, Feng Y, Liu X H, et al. Microstructure evolution of ω and α phase of β-CEZ alloy during the solution treatment and aging process [J]. Rare Met. Mater. Eng., 2018, 47: 2711
22 何 涛, 冯 勇, 刘向宏 等. β-CEZ钛合金在固溶时效时ω相与α相的组织演化规律 [J]. 稀有金属材料与工程, 2018, 47: 2711
23 Chen Y Y, Du Z X, Xiao S L, et al. Effect of aging heat treatment on microstructure and tensile properties of a new β high strength titanium alloy [J]. J. Alloys Compd., 2014, 586: 588
doi: 10.1016/j.jallcom.2013.10.096
24 Ren L, Xiao W L, Chang H, et al. Microstructural tailoring and mechanical properties of a multi-alloyed near β titanium alloy Ti-5321 with various heat treatment [J]. Mater. Sci. Eng., 2018, 711A: 553
25 Shang G Q, Kou F C, Fei Y, et al. Influence of aging processing on microstructure and mechanical properties of Ti-10V-2Fe-3Al alloy [J]. Rare Met. Mater. Eng., 2010, 39: 1061
25 商国强, 寇宏超, 费 跃 等. 时效工艺对Ti-10V-2Fe-3Al合金显微组织和力学性能的影响 [J]. 稀有金属材料与工程, 2010, 39: 1061
26 Mantri S A, Choudhuri D, Alam T, et al. Tuning the scale of α precipitates in β-titanium alloys for achieving high strength [J]. Scripta Mater., 154: 139
27 Kar S K, Suman S, Shivaprasad S, et al. Processing-microstructure-yield strength correlation in a near β Ti alloy, Ti-5Al-5Mo-5V-3Cr [J]. Mater. Sci. Eng., 2014, 610A: 171
28 Shekhar S, Sarkar R, Kar S K, et al. Effect of solution treatment and aging on microstructure and tensile properties of high strength β titanium alloy, Ti-5Al-5V-5Mo-3Cr [J]. Mater. Des., 2015, 66: 596
doi: 10.1016/j.matdes.2014.04.015
29 Zhu W G, Lei J, Zhang Z X, et al. Microstructural dependence of strength and ductility in a novel high strength β titanium alloy with Bi-modal structure [J]. Mater. Sci. Eng., 2019, 762A: 138086
30 Du Z X, Xiao S L, Xu L J, et al. Effect of heat treatment on microstructure and mechanical properties of a new β high strength titanium alloy [J]. Mater. Des., 2014, 55: 183
doi: 10.1016/j.matdes.2013.09.070
31 Xue Q, Ma Y J, Lei J F, et al. Evolution of microstructure and phase composition of Ti-3Al-5Mo-4.5V alloy with varied β phase stability [J]. J. Mater. Sci. Technol., 2018, 34: 2325
doi: 10.1016/j.jmst.2018.04.002
32 Li C, Zhang X Y, Li Z Y, et al. Effect of heat treatment on microstructure and mechanical properties of ultra-fine grained Ti-55511 near β titanium alloy [J]. Rare Met. Mater. Eng., 2015, 44: 327
doi: 10.1016/S1875-5372(15)30029-1
33 Sasaki L, Hénaff G, Arzaghi M, et al. Effect of long term aging on the fatigue crack propagation in the β titanium alloy Ti 17 [J]. Mat. Sci. Eng., 2017, 707A: 253
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.