材料研究学报, 2023, 37(5): 391-400 DOI: 10.11901/1005.3093.2022.448

研究论文

选区激光熔化316L不锈钢高应变率压缩下的塑性变形行为

刘涛,1,2,3, 尹志强1, 雷经发1,2, 葛永胜1, 孙虹1,2

1.安徽建筑大学机械与电气工程学院 合肥 230601

2.工程机械智能制造安徽省教育厅重点实验室 合肥 230601

3.灾害环境人员安全安徽省重点实验室 合肥 230601

Plastic Deformation Behavior of Selective Laser Melting 316L Stainless Steel under High Strain Rate Compression

LIU Tao,1,2,3, YIN Zhiqiang1, LEI Jingfa1,2, GE Yongsheng1, SUN Hong1,2

1.School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei 230601, China

2.Anhui Provincial Key Laboratory of Intelligent Manufacturing of Construction Machinery, Hefei 230601, China

3.Anhui Province Key Laboratory of Human Safety, Hefei 230601, China

通讯作者: 刘涛,副教授,liutao19841015@163.com,研究方向为可持续制造、无损检测

责任编辑: 吴岩

收稿日期: 2022-08-18   修回日期: 2022-10-17  

基金资助: 国家自然科学基金(51805003)
安徽高校优秀拔尖人才培育项目(gxyqZD2019057)
灾害环境人员安全安徽省重点实验室开放课题(DEPS-2021-02)

Corresponding authors: LIU Tao, Tel: 15855115249, E-mail:liutao19841015@163.com

Received: 2022-08-18   Revised: 2022-10-17  

Fund supported: National Natural Science Foundation of China(51805003)
Anhui Education Department Excellent Young Talent Support Project(gxyqZD2019057)
the Foundation of Anhui Province Key Laboratory of Human Safety(DEPS-2021-02)

作者简介 About authors

刘涛,男,1984年生,博士

摘要

对选区激光熔化316L不锈钢(SLM-316L)的高应变率(1000、2000、3000 s-1)压缩力学性能进行测试,用扫描电镜和背散射衍射(EBSD)等手段表征冲击加载前后试样的微观结构,并分析晶体结构的差异以及位错滑移、孪生行为等微观变形机制。结果表明:SLM-316L不锈钢在高应变率载荷作用下有显著的应变率强化效应,其微观组织由截面呈不规则多边形的柱状胞晶密排结构组成,高应变率加载使晶体取向的择优性降低、小角度晶界和孪晶界数量增加,且孪晶界在小角度晶界的交叉缠绕区分布密集,试样的塑性变形过程伴随着位错滑移及孪生行为。

关键词: 金属材料; 塑性变形; 高应变率压缩; 316L不锈钢; 选区激光熔化

Abstract

The selective laser melting 316L stainless steel (SLM-316L) was prepared with preferred process parameters, and then the effect of high strain rate compression on the plastic deformation behavior of SLM 316L stainless steel by high strain rates (1000, 2000 and 3000 s-1) was assessed by means of split Hopkinson pressure bar, scanning electron microscope and backscattered electron diffractometer in terms of the microstructure and microscopic deformation such as dislocation slip and twinning etc. Results show that SLM-316L stainless steel exhibits a significant strain rate strengthening effect by high strain-rate loading, and its microstructure is composed of closely packed columnar grains with irregular polygonal cross section. High strain rate loading decreases the degree of preferred orientation of grains and increases the number of small-angle grain boundaries and twin boundaries, and the twin boundaries are densely emerge in the cross-twisting region of small-angle grain boundaries. The plastic deformation process of the SLM-316L stainless steel is accompanied by dislocation slip and twinning behavior.

Keywords: metallic materials; plastic deformation; high strain rate compression; 316L stainless steel; selective laser melting

PDF (19636KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

刘涛, 尹志强, 雷经发, 葛永胜, 孙虹. 选区激光熔化316L不锈钢高应变率压缩下的塑性变形行为[J]. 材料研究学报, 2023, 37(5): 391-400 DOI:10.11901/1005.3093.2022.448

LIU Tao, YIN Zhiqiang, LEI Jingfa, GE Yongsheng, SUN Hong. Plastic Deformation Behavior of Selective Laser Melting 316L Stainless Steel under High Strain Rate Compression[J]. Chinese Journal of Materials Research, 2023, 37(5): 391-400 DOI:10.11901/1005.3093.2022.448

选区激光熔化(Selective laser melting,SLM)是一种典型的金属增材制造技术。SLM工艺成型的零部件致密度高、表面质量好,简单处理后即可服役。316L不锈钢具有良好的耐蚀性能和综合力学性能,是最早用SLM成型的材料,广泛用于能源、汽车工业和生物医学等领域。SLM-316L不锈钢等增材制造零部件服役时经受冲击载荷作用,因此明确材料在高应变率下的变形响应对于保障设备安全有重要的意义。

国内外学者进行了多种热处理制度下316L不锈钢的准静态和动态力学性能实验,得到了应力-应变数据并描述了其承载后的变形和断裂行为[1,2],使用电子背散射衍射(EBSD)方法研究了室温和高温(500℃)下316L不锈钢冲击变形的微观结构[3]并描述了冲击载荷作用下绝热剪切带[4]、中止孪晶和穿晶孪晶[5]形成机制。

由于尚未形成行业内广泛接受的增材制造认证流程及金属粉料规范,人们只能通过微观结构、相对密度、显微硬度和力学性能测试明确多种粒径分布的气体雾化316L不锈钢粉末原料对316L不锈钢性能的影响[6]。为了进行增材制造与传统工艺的对比,选取激光近净成形(LENS)[7]、选区激光熔化(SLM)[8]、冷金属过渡焊接(CMT)[9]、金属激光烧结(DMLS)[10,11]、退火锻造[7]等方式制备试样,获取了材料的静、动态[12,13]力学性能。同时,在此基础上研究了工艺参数(如激光功率、建造方向、扫描间距等)[14~16]、建造方向和试样厚度[17]、热处理制度[18]对材料静、动态力学性能的影响。在微观表征方面,人们对LENS-316L材料进行亚毫米到纳米域微观结构的多尺度表征[12],分析了SLM-316L的疲劳破坏情况及裂纹萌生和扩展的特点[19,20],并结合低温变形过程从层错能和晶粒织构角度阐述了SLM-316L高极限强度和低屈服比的微观机制[21]。同时,还结合316L不锈钢材料开展了分子动力学模拟[22]及力学性能的人工神经网络预测,取得了良好的预测精度[23]

国内外学者测试了用多种增材方式制备的316L不锈钢的静、动态力学性能,并进行了工艺参数优化和微观结构表征。SLM-316L不锈钢在高应变载荷下存在屈服失效风险,且其瞬时塑性变形伴随着晶体结构剧烈变化,但是冲击失效机理尚不明确。本文在前期实验基础上优选工艺参数制备SLM-316L不锈钢试样,分析试样加载前后晶体结构差异以及位错滑移、孪生行为,以揭示高应变率压缩下的微观变形机制。

1 实验方法

1.1 试样的制备

用气雾化成型316L不锈钢粉末制备试样。316L不锈钢粉末的形貌如图1a所示,可见粉末颗粒呈球形,且形状较为均匀。粉末粒径的分布如图1b所示,其中D10:17.550 μm;D25:21.752 μm;D50:27.378 μm;D75:34.153 μm;D90:41.769 μm;D97:50.587 μm,中位粒径为27.378 μm,粉末颗粒细小均匀。使用EDS能谱仪分析了粉末的元素成分(点扫描),元素的含量列于表1

图1

图1   粉末的微观形貌及粒径分布

Fig.1   Micro morphology (a) and particle size distribu-tion of powder (b)


表1   粉末的元素成分分析结果

Table 1  Element composition of the powder

ElementsSiCrMnMoNiFe
Mass fraction/%0.7417.950.722.4610.94Bal.
Atomic fraction/%1.4719.180.721.4210.35Bal.

新窗口打开| 下载CSV


制备试样前对不锈钢粉末进行干燥处理(环境温度200℃,干燥时间2 h),然后用激光选区熔化(SLM)成型设备(TB-SLM280)制备316L不锈钢试样,制备过程中成型仓的氧气含量(体积分数)保持在2×10-4~3×10-4,工艺参数优选为激光功率260 W、扫描速度950 mm/s、扫描间距0.10 mm[24]。根据动态压缩试样设计准则,选取圆柱形316L不锈钢试样的直径为12 mm厚度为5 mm。

SLM成型设备工作原理如图2所示。先将零件/试样三维模型导入SLM成型设备切片软件,对实体模型进行分层离散化处理,获取各截面轮廓信息并规划扫描路径。设置激光参数,将来自送粉装置的金属粉末材料平铺在基板上,用扫描振镜控制激光束按规划路径对粉末进行选择性照射,使其熔化、凝固形成熔覆层。基板平台下降将金属粉末平铺在熔覆层上,再次用选择性照射产生新的熔覆层并与之前的熔覆层形成冶金结合。重复上述步骤,逐层堆积制备出组织致密的金属试样。

图2

图2   SLM成型设备的工作原理

Fig.2   Working principle of SLM forming equipment


1.2 高应变率压缩实验装置的原理和使用方法

用分离式霍普金森压杆(SHPB)实验装置进行高应变率压缩实验。图3给出了装置的原理图。该装置由加载系统、杆系统和测试系统组成。杆系统包括冲击杆(200 mm)、入射杆(1000 mm)、透射杆(1000 mm)和吸收杆(600 mm)。杆径均为14.5 mm,材料为55CrSi弹簧钢,弹性模量为210 GPa,密度为7.85 g/cm3,波速约为5100 m/s。测试系统包括应变片、超动态应变仪和数据采集装置。

图3

图3   SHPB装置的原理图

Fig.3   Schematic diagram of SHPB device


进行SHPB实验需满足一维应力波假定和均匀性假定。为了满足一维应力波假定,选取入射杆和透射杆的长径比为68.97(大于20),入射杆长度为冲击杆的5倍,应变片位于杆中间位置,且距杆两端距离大于10倍杆径。实验时将试样置于入射杆与透射杆之间并在试样与杆的接触面涂抹润滑剂(凡士林)以减少摩擦。

在加载系统高压气体作用下冲击杆以一定的速度撞击入射杆,在入射杆产生入射波并出现弹性应变εi。入射波沿着入射杆传至试样,一部分入射波返回形成反射波,入射杆再次出现弹性应变εr。另一部分透过试样传至透射杆形成透射波,透射杆产生弹性应变εt。在实验过程中调整冲击杆撞击速度可改变试样的加载应变率。试样的平均工程应变率ε˙(t)、平均工程应变ε(t)和应力σ(t)的关系为

ε˙(t)=c0l0(εi-εr-εt)        ε(t)=c0l00t(εi-εr-εt)dtσ(t)=EA2A0(εi+εr+εt)    

式中εiεrεt分别为入射应变、反射应变和透射应变;c0为杆的弹性波速(m/s),EA分别为压杆的弹性模量(GPa)和杆的横截面积(mm2);A0l0分别为试样的面积(mm2)和长度(mm)。

图4给出了试样在2000 s-1下的动态压缩原始波形。根据波形数据绘制冲击加载过程中试样两端面的应力-时间曲线,如图5所示。图5中入射应力与反射应力之和基本等于透射应力,说明动态压缩过程试样两端面始终保持应力平衡状态。为了提高数据的准确性,每次测试重复三次。

图4

图4   动态压缩实验的原始波形

Fig.4   Original waveform of dynamic compression experiment


图5

图5   应力平衡曲线

Fig.5   Stress balance curves


1.3 试样微观结构的表征

用线切割在SLM成型试样(图6a)内截取长方体样块(图6b)。为了避免微观组织的各向异性影响观测结果,分别对SLM成型试样的激光扫描平面和建造截面进行抛光和腐蚀。为了去除应变层残余应力,将试样在机械抛光基础上进行电解抛光,以保证测试表面20 μm内无残余应力。用扫描电镜(Gemini SEM 500)及其搭载的EBSD探测器表征高应变率加载前后SLM成型试样的微观组织、晶体微区取向及结构。

图6

图6   微观结构表征试样

Fig.6   Microstructure characterization specimens (a) SLM molding specimen, (b) cuboid specimen


2 实验结果和分析

2.1 试样在高应变率压缩载荷下的力学性能

测试高应变率压缩力学性能,得到了SLM成型316L不锈钢试样在高应变率(1000、2000和3000 s-1)下的应力-应变数据。如图7a所示,在各加载应变率下试样均出现弹性和塑性(屈服、强化)阶段。以加载应变率2000 s-1为例,图7b中的OP段为弹性阶段,PB段为塑性阶段,曲线的上、下屈服点应力值记为σsuσsl,取其平均值作为屈服极限,记为σs。在PB段中,应变进一步增加进入强化阶段,流动应力随着应变的增加而增大,在卸载时达到峰值。

图7

图7   动态压缩应力-应变曲线

Fig.7   Dynamic compressive stress-strain curves (a) stress-strain curves (1000, 2000 and 3000 s-1), (b) analysis of curves


试样在三种应变率下的屈服强度σs分别为677、760和788 MPa,峰值应力分别为819、1209和1635 MPa。试样的屈服强度和峰值应力均随着应变率的增加而增加,较大的峰值应力增幅体现了显著的应变率强化效应。SLM成型316L不锈钢在相同应变率下的屈服强度,略低于传统冷拔成型的316L不锈钢[25]

2.2 微观形貌

试样是用离散堆积方式制备的,因此其激光扫描平面和建造截面的微观结构不同。为了准确表征三维形貌,分别对激光扫描平面和建造截面进行SEM观测。图8给出了高应变率加载前试样的微观形貌。

图8

图8   高应变率加载前试样的微观形貌

Fig.8   Micromorphology of specimen before high strain rate loading (a) laser scanning plane, (b) construction section, (c) enlarged image of zone I, (d) enlarged image of zone II, (e) enlarged image of zone III


图8a图8b可见,试样的激光扫描平面和建造截面的微观形貌基本相同,建造截面内熔池的痕迹清晰可见。试样的微观组织由许多亚微米尺寸的微小结构单元组成,各单元之间紧密排列并呈现出分片差异,与图中的Ⅰ、Ⅱ、Ⅲ区域对应。从图8c图8d图8e可见,Ⅰ区域内结构单元呈近似多边形,其外接圆直径约为0.5 μm,Ⅱ区域内结构单元呈近似椭圆形,其长轴约为1~4 μm,短轴约为0.5 μm,Ⅲ区域内结构单元呈近似柱状,其长度可横跨整个Ⅲ区域,宽度约为0.5 μm。

可以发现,试样的微观组织由截面呈不规则多边形的柱状胞晶密排结构(图9b)组成。其原因是,在SLM工艺过程中金属粉末熔融后高速冷却而与基体之间产生极高的温度梯度,而试样晶体结构沿温度梯度方向呈现出外延生长特性,进而形成了细小的柱状胞晶。同时,在SLM成型过程中熔融层热流的随机取向使各胞晶的取向产生较大的差异。图8中Ⅰ、Ⅱ、Ⅲ区域内的胞晶形貌,分别对应图9a中的横截面、斜截面和纵截面结构。

图9

图9   柱状胞晶及其密排结构示意图

Fig.9   Schematic diagram of columnar cell crystal and close-packed structure (a) columnar cell crystal structure, (b) close-packed structure


图10ab分别给出了高应变率加载后激光扫描平面和建造截面的微观形貌,结合图9可知激光扫描平面柱状晶形貌没有明显的改变,而建造截面柱状胞晶密排结构产生了显著的挤压变形。其原因是,在塑性变形过程中柱状胞晶内部位错滑移在晶胞壁处堆积,且随着变形的增大一部分位错滑过晶胞壁破坏了晶胞壁的完整性。

图10

图10   高应变率加载后试样的微观形貌

Fig.10   Micromorphology of specimen after high strain rate loading (a) laser scanning plane, (b) construction section


2.3 高应变率压缩下的塑性变形行为

为了揭示SLM-316L不锈钢在高应变率压缩下的塑性变形行为,以加载应变率2000 s-1为例,收集加载前后的SLM成型试样(以下简称初始试样和变形试样),分析试样晶体结构的差异以及位错滑移、孪生行为等微观变形机制。

2.3.1 晶体的形貌和取向分析

在SLM成型过程中激光扫描和熔覆层堆积有明显的方向性,因此SLM成型试样的晶体形貌和取向会受成型方向的影响。在高应变率载荷作用下试样在短时间内发生剧烈塑性变形,使晶体的形貌及位相差改变。图11给出了基于EBSD技术绘制的初始试样和变形试样建造截面的晶体取向图、极图和反极图。

图11

图11   晶体形貌和取向分析

Fig.11   Crystal morphology and orientation analysis (a) crystal orientation figure of the initial specimen, (b) crystal orientation figure of the deformed specimen, (c) pole figure and inverse pole figure of the initial specimen, (d) pole figure and inverse pole figure of the deformed specimen


图11a给出了初始试样的晶体取向图,可见各晶体的形状和尺寸有较大的差异,晶界较平直,晶粒长度约为10~150 μm不等。在建造截面内同时存在等轴晶和柱状晶,部分晶粒内部由多个不同取向的组织组成,表明单个大晶粒内有不同方向的胞状亚晶。图11b给出了变形试样的晶体取向图,可见试样经高应变率加载后晶粒的形状和尺寸差异更大,建造截面内的晶粒形貌不规则,在晶界密集处可见直径约为1~2 μm的等轴晶粒,其余晶粒的长度仍为10~150 μm不等。与初始试样相比,单个晶粒内部出现更多的取向差异,较平直的晶界出现了弯曲、断裂。

图11c给出了初始试样晶粒的极图和反极图,可见在三个特征晶面{100}、{110}、{111}内均存在取向强度较高的分布点,且极密度较高的点沿乌氏网横、纵轴呈对称分布,晶粒取向有较强的择优性。晶体取向在沿X0方向(建造方向)有平行于(001)方向的择优性,强度为4.89;沿Y0方向即激光扫描方向有平行于(101)方向的择优性,强度为6.91。图11d给出了变形试样晶粒的极图和反极图。可以看出,仅在{111}晶面内出现了一个强度较高的分布点,极密度为9.03,晶粒取向未见较强择优性。对反极图的分析发现,晶体取向沿物体坐标系X0Y0Z0方向均未呈现出极强择优性,沿激光扫描平面有平行于(111)方向强度为2.55的取向分布,沿建造方向有平行于(101)方向强度为4.32的取向分布。

上述分析表明,变形试样的晶体择优取向强度显著低于初始试样,高应变率加载使晶体取向的择优性降低。

图12给出了试样晶体尺寸的统计,可见试样经高应变率加载后0~4 μm区间内的晶粒数量大幅增加,从35.7%增至64.11%。0~10 μm区间内的晶体数量从62.2%增至84.9%,而尺寸大于10 μm的晶粒数量显著减少,从37.8%降至18.1%。其原因是,晶体的切变行为多发生在晶界处,在高应变率载荷作用下外延生长的柱状晶发生断裂生成了细小的等轴晶。

图12

图12   晶粒尺寸的统计

Fig.12   Statistics of grain size (a) the initial specimen, (b) the deformed specimen


2.3.2 大、小角度晶界和孪晶

图13给出了初始试样和变形试样的大小、角度晶界的分布,给出了试样沿压缩方向观测截面内的大、小角度晶界分布及晶界数目统计,图中的黑色表示大角度晶界(HAGB,相邻晶体位相差大于10°),红色表示小角度晶界(LAGB,相邻晶体的位相差小于10°)。

图13

图13   大角度和小角度晶界分布图

Fig.13   Distribution of large and small angle grain boundaries (a) grain boundary figure of the initial specimen, (b) grain boundary figure of the deformed specimen, (c) grain boundary statistical diagram of the initial specimen, (d) grain boundary statistical diagram of the deformed specimen


图13ab可见,初始试样中的小角度晶界均匀地分布在晶粒内部以及晶界处,晶界之间未发生明显交织缠绕。高应变率加载后小角度晶界的数量增加,集中分布在晶界处及小尺寸晶粒内部,且在集中分布区域内小角度晶界之间出现了明显的交织缠绕。

图13cd给出了晶界统计结果,高应变率加载前后试样中的小角度晶界数量占比均较高,初始试样中的小角度晶界占比达到了69%,变形试样中的小角度晶界数量进一步增加到了84%。其原因是,试样的动态塑性变形过程伴随着晶体间的位错滑移,相邻晶体间的位错运动产生局部取向差而新增小角度晶界。同时,新增的小角度晶界也阻碍位错运动,呈现出交织缠绕现象。

图14给出了试样变形前后微观组织内孪晶界的分布,图中红色为孪晶界,黑色和黄色分别代表大角度晶界和小角度晶界。从图14a中可见,初始试样中可观测的孪晶界数量极少,主要分布在小尺寸再结晶晶粒内部及大角度晶界边缘,而变形试样中孪晶界的数量大幅增加(图14b)。这种孪晶界在各晶粒内部、大角度晶界边缘和小角度晶界处均有分布,且在小角度晶界的交叉缠绕区较为密集。

图14

图14   孪晶界的分布

Fig.14   Distribution of twin boundaries (a) the initial specimen, (b) the deformed specimen


由于在SLM成型过程中金属粉末熔化后迅速凝固,熔融金属处于高温度梯度下的非平衡冷却状态,局部区域短时间内的重复加热和冷却循环产生残余应力,且在高应力区出现堆垛层错[26,27]。依靠堆垛层错的滑移运动,在初始试样的组织内存在极少数的孪晶结构,是一种生长孪晶或退火孪晶。高应变率加载,是变形试样中生成孪晶的主要原因。在前述分析中已知,SLM工艺过程中熔融金属的不均匀凝固造成晶体内部的堆垛层错。层错能越低的晶体,层错界面越稳定,比孪生行为位错滑移更难发生,从而促进了孪晶的生成。在图14b中小角度晶界与孪晶界共存,表明试样在塑性变形过中既发生了位错滑移也发生了孪生行为。

2.3.3 几何位错密度

图15给出了初始试样和变形试样中的核平均取向位错图(Kernel average misorientation,KAM)和几何位错密度图。KAM图可定性地反应材料在塑性变形时的均匀化程度,根据图中色卡颜色可将强度划分为五级。强度较高点表示该处塑性变形程度大,强度点密集分布区域表示该处塑性变形较为集中。

图15

图15   试样的KAM图和位错密度统计

Fig.15   KAM figures and dislocation density statistical diagrams of specimens (a) KAM figure of the initial specimen, (b) KAM figure of the deformed specimen, (c) dislocation density statistical diagram of the initial specimen, (d)dislocation density statistical diagram of the deformed specimen


图15a给出了初始试样的KAM图,可见中低位错密度点主要沿大、小角度晶界分布,且低位错密度点占据观测截面大部分区域(蓝色),高位错密度点在观测区域内的分布较分散,没有出现明显的聚集(绿色)。图15b给出了变形试样的KAM图。可以看出,与初始试样相比,变形试样的几何位错密度变化较大,低位错密度点仍占据观测截面大部分区域(蓝色),但中位错密度点大幅增加,且在观测区域呈现明显的聚集现象(绿色和黄色),还出现了离散分布在中位错密度区域的高位错密度点(红色)。

图15cd可见,试样经加载变形后位错密度在0~1间的面积占比由88.51%降低至60.40%,位错密度在1~5间的面积占比由11.59%增加至39.60%。试样塑性变形过程伴随着位错滑移和孪生行为,在微观组织内产生断裂的大角度晶界、大量小角度晶界和少量孪晶界,因此变形试样中的位错密度会随着晶界数量的增加而提高,且高位错密度点分布集中在晶界密集处。

3 结论

(1) SLM-316L不锈钢试样在高应变率条件下存在典型的弹性和塑性(屈服、强化)阶段。屈服强度和峰值应力均随着应变率的提高而增大,应变率的强化效应显著。

(2) SLM-316L不锈钢的微观组织由截面呈不规则多边形的柱状胞晶密排结构组成,各胞晶的取向差异较大,高应变率加载后外延生长的柱状晶发生断裂形成了细小的等轴晶,晶体的择优取向强度显著降低。

(3) 高应变率载荷使初始占比较高的小角度晶界数量进一步增加,且在集中分布区域内出现明显的交织缠绕。初始试样可观测孪晶界数量极少,高应变率加载后孪晶界的数量大幅度增加,且在小角度晶界交叉缠绕区密集分布。

(4) 试样加载变形后微观组织内产生断裂的大角度晶界、大量小角度晶界和少量孪晶界,变形试样的位错密度随着晶界数量的增加而提高,且高位错密度的分布集中在晶界密集处。在塑性变形过程中,同时存在互相竞争的位错滑移和孪生行为。

参考文献

Lee W S, Chen T H, Lin C F, et al.

Impact response and microstructural evolution of 316L stainless steel under ambient and elevated temperature conditions

[J]. Metall. Mater. Trans., 2012, 43A(11) : 3998

[本文引用: 1]

Ziętala M, Durejko T, Panowicz R, et al.

Microstructure evolution of 316L steel prepared with the use of additive and conventional methods and subjected to dynamic loads: a comparative study

[J]. Materials, 2020, 13(21): 4893

DOI      URL     [本文引用: 1]

The mechanical properties and microstructure evolution caused by dynamic loads of 316L stainless steel, fabricated using the Laser Engineered Net Shaping (LENS) technique and hot forging method were studied. Full-density samples, without cracks made of 316L stainless steel alloy powder by using the LENS technique, are characterized by an untypical bi-modal microstructure consisting of macro-grains, which form sub-grains with a similar crystallographic orientation. Wrought stainless steel 316L has an initial equiaxed and one-phase structure, which is formed by austenite grains. The electron backscattered diffraction (EBSD) technique was used to illustrate changes in the microstructure of SS316L after it was subjected to dynamic loads, and it was revealed that for both samples, the grain refinement increases as the deformation rate increases. However, in the case of SS316L samples made by LENS, the share of low-angle boundaries (sub-grains) decreases, and the share of high-angle boundaries (grains of austenite) increases. Dynamically deformed wrought SS316L is characterized by the reverse trend: a decrease in the share of high-angle boundaries and an increase in the share of low-angle boundaries. Moreover, additively manufactured SS316L is characterized by lower plastic flow stresses compared with hot-forged steel, which is caused by the finer microstructure of wrought samples relative to that of additive samples. In the case of additively manufactured 316L steel samples subjected to a dynamic load, plastic deformation occurs predominantly through dislocation slip, in contrast to the wrought samples, in which the dominant mechanism of deformation is twinning, which is favored by a high deformation speed and low stacking fault energy (SFE) for austenite.

Yvell K, Grehk T M, Engberg G.

Microstructure characterization of 316L deformed at high strain rates using EBSD

[J]. Mater. Charact., 2016, 122: 14

DOI      URL     [本文引用: 1]

Li J N, Gao D, Lu Y, et al.

Mechanical properties and microstructure evolution of additive manufactured 316L stainless steel under dynamic loading

[J]. Mater. Sci. Eng., 2022, 855A: 143896

[本文引用: 1]

Song R B, Xiang J Y, Hou D P.

Characteristics of mechanical properties and microstructure for 316L austenitic stainless steel

[J]. J. Iron Steel Res. Int., 2011, 18(11): 53

[本文引用: 1]

Chen W, Yin G F, Feng Z, et al.

Effect of powder feedstock on microstructure and mechanical properties of the 316L stainless steel fabricated by selective laser melting

[J]. Metals, 2018, 8(9): 729

DOI      URL     [本文引用: 1]

Additive manufacturing by selective laser melting (SLM) was used to investigate the effect of powder feedstock on 316L stainless steel properties include microstructure, relative density, microhardness and mechanical properties. Gas atomized SS316L powders of three different particle size distribution were used in this study. Microstructural investigations were done by scanning electron microscopy (SEM). Tensile tests were performed at room temperatures. Microstructure characterization revealed the presence of hierarchical structures consisting of solidified melt pools, columnar grains and multiform shaped sub-grains. The results showed that the SLM sample from the fine powder obtained the highest mechanical properties with ultimate tensile strength (UTS) of 611.9 ± 9.4 MPa and yield strength (YS) of 519.1 ± 5.9 MPa, and an attendant elongation (EL) of 14.6 ± 1.9%, and a maximum of 97.92 ± 0.13% and a high microhardness 291 ± 6 HV0.1. It has been verified that the fine powder (~16 μm) could be used in additive manufacturing with proper printing parameters.

Gray G T, Livescu V, Rigg P A, et al.

Structure/property (constitutive and spallation response) of additively manufactured 316L stainless steel

[J]. Acta Mater., 2017, 138: 140

DOI      URL     [本文引用: 2]

Shao K, Zhou Q L, Liu Y, et al.

Effect of laser power on the mechanical properties of selective laser melted 316L stainless steel

[J]. Laser. Eng., 2022, 53(5-6): 393

[本文引用: 1]

Chen J, Wei H Y, Bao K, et al.

Dynamic mechanical properties of 316L stainless steel fabricated by an additive manufacturing process

[J]. J. Mater. Res. Technol., 2021, 11: 170

DOI      URL     [本文引用: 1]

Cai G D, Cheng X Y, Wang D.

Preparation of 316L stainless steel products by fused deposition model 3D-printing and effect of La on morphology and distribution of precipitates

[J]. Chin. J. Mater. Res., 2020, 34(8): 635

[本文引用: 1]

蔡国栋, 程西云, 王 典.

FDM型3D打印316L不锈钢试样和La对析出物形貌和分布的影响

[J]. 材料研究学报, 2020, 34(8): 635

DOI      [本文引用: 1]

使用微米级316L不锈钢粉末和蜡基粘结剂制备热融性喂料,用FDM型金属3D打印方法和工艺3D打印成形目标模型生胚,经过脱脂和烧结成形为最终金属试样。对制备出的金属试样进行性能表征和测试,验证了此种成形方式的可行性,针对试样中析出物的形貌不规则和晶界上的夹杂物,研究了稀土La对析出物的影响。根据生胚脱脂后形成的微孔结构,提出一种液相添加稀土La的方法。结果表明:用FDM型3D打印能制备316L不锈钢试样,用液相添加法可向生胚中添加微量稀土La,质量比为0.3%的LaCl<sub>3</sub>能显著改善烧结后试样中析出物的微观形貌和分布。

Kim K T.

Mechanical performance of additively manufactured austenitic 316L stainless steel

[J]. Nucl. Eng. Technol., 2022, 54(1): 244

DOI      URL     [本文引用: 1]

Chen J, Wei H Y, Zhang X F, et al.

Flow behavior and microstructure evolution during dynamic deformation of 316L stainless steel fabricated by wire and arc additive manufacturing

[J]. Mater. Des., 2021, 198: 109325

DOI      URL     [本文引用: 2]

Chang C, Wu W, Zhang H, et al.

Mechanical characteristics of superimposed 316L lattice structures under static and dynamic loading

[J]. Adv. Eng. Mater., 2021, 23(7): 2001536

DOI      URL     [本文引用: 1]

Liverani E, Toschi S, Ceschini L, et al.

Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel

[J]. J. Mater. Process. Technol., 2017, 249: 255

DOI      URL     [本文引用: 1]

Jiang H Z, Fang J H Y, Chen Q S, et al.

State of the art of selective laser melted 316L stainless steel: process, microstructure, and mechanical properties

[J]. Chin. J. Lasers, 2022, 49(14): 1402804

蒋华臻, 房佳汇钰, 陈启生 .

激光选区熔化成形316L不锈钢工艺、微观组织、力学性能的研究现状

[J]. 中国激光, 2022, 49(14): 1402804

Ma Y Y, Liu Y D, Shi W T, et al.

Effect of scanning speed on forming defects and properties of selective laser melted 316L stainless steel powder

[J]. Laser Optoelectron. Progr., 2019, 56(10): 101403

[本文引用: 1]

马英怡, 刘玉德, 石文天 .

扫描速度对选区激光熔化316L不锈钢粉末成形缺陷及性能的影响

[J]. 激光与光电子学进展, 2019, 56(10): 101403

[本文引用: 1]

Carassus H, Guérin J D, Morvan H, et al.

An experimental investigation into influences of build orientation and specimen thickness on quasi-static and dynamic mechanical responses of selective laser melting 316L stainless steel

[J]. Mater. Sci. Eng., 2022, 835A: 142683

[本文引用: 1]

Waqar S, Liu J W, Sun Q D, et al.

Effect of post-heat treatment cooling on microstructure and mechanical properties of selective laser melting manufactured austenitic 316L stainless steel

[J]. Rapid Prototyping J., 2020, 26(10): 1739

DOI      URL     [本文引用: 1]

This paper aims to investigate the influence of different post-annealing cooling conditions, i.e. furnace cooling (heat treatment (HT) 1 – slow cooling) and air cooling (HT 2 – fast cooling), on the microstructure and mechanical properties of selective laser melting (SLM) built austenitic 316L stainless steel (SS).

Zeng F Y, Yang Y T, Qian G A.

Fatigue properties and S-N curve estimating of 316L stainless steel prepared by SLM

[J]. Int. J. Fatigue, 2022, 162: 106946

DOI      URL     [本文引用: 1]

Yu C F, Zhao C C, Zhang Z F, et al.

Tensile properties of selective laser melted 316L stainless steel

[J]. Acta Metall. Sin., 2020, 56(5): 683

[本文引用: 1]

余晨帆, 赵聪聪, 张哲峰 .

选区激光熔化316L不锈钢的拉伸性能

[J]. 金属学报, 2020, 56(5): 683

DOI      [本文引用: 1]

对选区激光熔化(selective laser melting,SLM) 316L不锈钢的拉伸性能及断裂机制进行了研究,并对拉伸断裂后的试样进行显微组织表征与分析,探究了拉伸变形过程中微观组织的演化规律。结果表明:采用选区激光熔化技术制备的316L不锈钢具有较好的强塑性匹配,其中晶粒内部纳米尺度胞状结构有助于强度的提升;其拉伸性能明显优于传统手段制备的316L不锈钢。选区激光熔化316L不锈钢在拉伸过程中奥氏体晶粒内部产生形变孪晶,并且形变孪晶的出现存在取向相关,在取向接近&lt;001&gt;的晶粒中不易出现,而在取向接近&lt;110&gt;-&lt;111&gt;的晶粒中较易出现。

Wang C, Lin X, Wang L L, et al.

Cryogenic mechanical properties of 316L stainless steel fabricated by selective laser melting

[J]. Mater. Sci. Eng., 2021, 815A: 141317

[本文引用: 1]

Wang X, Liu C, Zhou Z Q, et al.

In-situ EBSD investigation of plastic damage in a 316 austenitic stainless steel and its molecular dynamics (MD) simulations

[J]. J. Mater. Res. Technol., 2021, 13: 823

DOI      URL     [本文引用: 1]

Narayana P L, Lee S W, Park C H, et al.

Modeling high-temperature mechanical properties of austenitic stainless steels by neural networks

[J]. Comp. Mater. Sci., 2020, 179: 109617

DOI      URL     [本文引用: 1]

Li Y L, Ge Y S, Lei J F, et al.

Mechanical properties and constitutive model of selective laser melting 316L stainless steel at different scanning speeds

[J]. Adv. Mater. Sci. Eng., 2022, 2022: 2905843

[本文引用: 1]

Lee W S, Lin C F, Chen T H, et al.

High temperature deformation and fracture behaviour of 316L stainless steel under high strain rate loading

[J]. J. Nucl. Mater., 2012, 420(1-3): 226

DOI      URL     [本文引用: 1]

Zhou S F, Xie M, Wu C Y, et al.

Selective laser melting of bulk immiscible alloy with enhanced strength: Heterogeneous microstructure and deformation mechanisms

[J]. J. Mater. Sci. Technol., 2022, 104: 81

DOI      [本文引用: 1]

To overcome the dimension limits of immiscible alloys produced by traditional techniques and enhance their mechanical properties, bulk Cu-Fe-based immiscible alloy with abundant nanotwins and stacking faults was successfully produced by selective laser melting (SLM). The SLM-produced bulk immiscible alloy displays a heterogeneous microstructure characterized by micro-scaled γ-Fe particles dispersed in fine ε-Cu matrix with a high fraction (~92%) of high-angle grain boundaries. Interestingly, abundant nanotwins and stacking faults are generated in the interior of nano-scaled γ-Fe particles embedded within ε-Cu matrix. The heterogeneous interface of soft domains (ε-Cu) and hard domains (γ-Fe) not only induces the geometrically necessary dislocations (GNDs) but also affects the dislocation propagation during plastic deformation. Therefore, the bimodal heterogeneous interface, and the resistance of nanotwins and stacking faults to the propagation of partial dislocation make the bulk immiscible alloy exhibit an enhanced strength of ~590 MPa and a good ductility of ~8.9%.

Yang D C, Zhao Y, Kan X F, et al.

Twinning behavior in deformation of SLM 316L stainless steel

[J]. Mater. Res. Express, 2022, 9(9): 096502

[本文引用: 1]

/