Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (9): 706-714    DOI: 10.11901/1005.3093.2021.496
  研究论文 本期目录 | 过刊浏览 |
脉冲电流对冷坩埚定向凝固TiAl基合金微观组织和性能的影响
王国田1(), 龙泽堃2, 吴彪1, 王强1, 丁宏升2
1.黑龙江工程学院汽车与交通工程学院 哈尔滨 150050
2.哈尔滨工业大学材料科学与工程学院 金属精密热加工国家重点实验室 哈尔滨 150001
Effects of Pulse Current on the Microstructure and Properties of Directionally Solidified TiAl Based Alloy in Cold Crucible
WANG Guotian1(), LONG Zekun2, WU Biao1, WANG Qiang1, DING Hongsheng2
1.School of Automobil and Traffic Engineering, Heilongjiang Institute of Technology, Harbin 150050, China
2.National Key Laboratory for Precision Hot Processing of Metals, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
引用本文:

王国田, 龙泽堃, 吴彪, 王强, 丁宏升. 脉冲电流对冷坩埚定向凝固TiAl基合金微观组织和性能的影响[J]. 材料研究学报, 2022, 36(9): 706-714.
Guotian WANG, Zekun LONG, Biao WU, Qiang WANG, Hongsheng DING. Effects of Pulse Current on the Microstructure and Properties of Directionally Solidified TiAl Based Alloy in Cold Crucible[J]. Chinese Journal of Materials Research, 2022, 36(9): 706-714.

全文: PDF(13187 KB)   HTML
摘要: 

施加脉冲电流进行Ti-45.5Al-4Cr-2.5Nb(原子分数,%)合金的定向凝固并结合仿真实验,研究了脉冲电流对其凝固组织和性能的影响。结果表明:随着频率为200 Hz的脉冲电流密度的增大电流集肤效应增强、熔体内电流集肤效应加重。在集肤层电流焦耳热效应的作用下糊状区侧向散热的热流密度降低,使枝晶的平均偏离角减小,从而使合金的断后延伸率增大。脉冲电流密度较小时,在焦耳热效应和电磁搅拌的作用下熔体中枝晶的重熔和破碎使柱状晶晶粒的径向尺寸减小。但是,过量的焦耳热使熔区的长度增大、温度梯度减小,反而使晶粒的径向尺寸增大。因此随着电流密度的增大TiAl合金的抗拉强度先提高后降低,施加频率为200 Hz、电流密度为35.3 mA/mm的脉冲电流TiAl合金的抗拉强度最大,比母合金铸锭的抗拉强度提高了70.7%。电流密度为52.9 mA/mm时延伸率达到最大值,比母合金锭的延伸率提高了129.5%。

关键词 金属材料脉冲电流TiAl合金定向凝固微观组织力学性能    
Abstract

Referring to the simulation results, the effects of pulse current with different parameters on the solidification structure and properties of directionally solidified Ti-45.5Al-4Cr-2.5Nb (%, atom fraction) alloy were investigated. The results show that when the pulse current frequency is 200 Hz, due to the skin effect of current and Joule heat effect of current the surface current of melt is biased and the lateral heat dissipation decreases, the average deviation angle of dendrite decreases, and the elongation increases with the decrease of deviation angle. When the density of pulse current is small, the average width of grains decreases with the increase of current density due to Joule heat effect of current and electromagnetic stirring which promote the remelting or breaking of dendrites. However, when the current density reaches a certain value, the melting zone grows up and the temperature gradient decreases. On the contrary, the average width of grains increases and the tensile strength of TiAl alloy first increases with the increase of current density, and then decreases; Compared with the master alloy ingot, the tensile strength and elongation of TiAl alloy increased by 70.7% and 129.5% respectively.

Key wordsmetallic materials    pluse current    TiAl alloy    directional solidification    microstructure    mechanical property
收稿日期: 2021-08-31     
ZTFLH:  TG244.3  
基金资助:黑龙江工程学院博士基金(2019BJ03);黑龙江工程学院基本科研业务费(创新团队类)项目(2020CX02);黑龙江工程学院基本科研业务费(创新团队类)项目(2018CX07);省领军人才梯队培育计划(2020LJ04);黑龙江省自然科学基金(LH2019E114)
作者简介: 王国田,男,1978年生,博士
图1  在连续凝固过程中加载脉冲电流的示意图
图2  在不同脉冲电流作用下TiAl基合金凝固过程中温度场的分布

Current density

/mA·mm-2

Radial temperature difference of melt/℃
046.5
17.631.4
35.325.3
52.917.9
表1  在不同脉冲电流作用下熔体的径向温度差
图3  在不同脉冲电流作用下TiAl基合金的径向温度分布
图4  在不同脉冲电流作用下Ti-45.5Al-4Cr-2.5Nb合金试样的宏观凝固组织
图5  在不同脉冲电流作用下试样晶粒的平均偏离角
Current density/mA·mm-2Average deviation angle of grains / (°)
030.2
17.621.5
35.318.6
52.917.0
表2  在不同脉冲电流作用下试样晶粒的平均偏离角
图6  在不同脉冲电流作用下定向凝固TiAl合金的OM像
图7  在不同脉冲电流密度下定向凝固TiAl合金的XRD谱
Current density/mA·mm-2Average grain width/μm
0850.67
17.6728.16
35.3685.93
52.9776.32
表3  在不同脉冲电流作用下试样晶粒的平均径向尺寸
图8  在不同脉冲电流作用下TiAl基合金是片层取向
图9  在不同脉冲电流作用下TiAl基合金的片层角度小于45°的片层区域占比
图10  在不同脉冲电流作用下定向凝固TiAl合金的SEM照片
SampleAnalysis locationTiAlCrNb
0 mA/mm2145.8748.882.582.67
251.8035.0710.22.93
17.6 mA/mm2148.3746.162.712.76
249.6937.1610.272.88
35.3 mA/mm2147.4946.742.822.95
251.5435.859.513.10
52.9 mA/mm2146.2147.712.923.16
252.2635.259.473.02
表4  在不同脉冲电流作用下TiAl基合金的能谱分析结果
图11  在不同脉冲电流作用下TiAl基合金的室温拉伸曲线
SampleTensile strength/MPaElongation/%
Master alloy260.60.122
0 mA/mm2264.30.153
17.6 mA/mm2304.70.186
35.3 mA/mm2404.10.217
52.9 mA/mm2322.70.289
表5  在不同脉冲电流作用下TiAl基合金的拉伸性能
1 Dimiduk D M. Gamma titanium aluminide alloys-an assessment within the competition of aerospace structural materials [J]. Materials Science and Engineering: A, 1999, 263(2): 281
doi: 10.1016/S0921-5093(98)01158-7
2 Appel F, Brossmann U, Christoph U. Recent progress in the development of gamma titanium aluminide alloys [J]. Advanced Engineering Materials, 2000, 2(11): 699
doi: 10.1002/1527-2648(200011)2:11<699::AID-ADEM699>3.0.CO;2-J
3 Paul J D H, Oehring M. Gamma Titanium Aluminide Alloys [M]. Germany: Wiley-VCH Verlag & Co. KGaA, Boschstr. Weinheim, Springer, 2011: 1
4 Wu X. Review of alloy and process development of TiAl alloys [J]. Intermetallics, 2006, 14(10):1114
doi: 10.1016/j.intermet.2005.10.019
5 Kim Y W. Ordered intermetallic alloys, part III: gamma titanium aluminides [J]. JOM, 1994, 46(7): 30
6 Shigeo A. Recent development and prospect of electromagnetic processing of materials [J]. Sci. Technol. Adv. Mater., 2000, 1(4): 191
doi: 10.1016/S1468-6996(00)00016-4
7 Asai S. Electromagnetic Processing of Materials [M]. Springer Netherlands, 2012: 87
8 Wang R Z, Qi J G, Wang B, et al. Solidification behavior and crystal growth mechanism of aluminum under electric pulse [J]. J. Mater. Process. Technol., 2016, 237: 235
doi: 10.1016/j.jmatprotec.2016.06.016
9 Chen Z X, Ding H S, Chen R R, et al. An innovative method for the microstructural modification of TiAl alloy solidified via direct electric current application [J]. J. Mater. Sci. Technol., 2019, 35(1): 23
doi: 10.1016/j.jmst.2018.06.016
10 Li J, Ma J H, Song C J, et al. Columnar to equiaxed transition during solidification of small ingot by using electric current pulse [J]. J. Iron Steel Res. Int., 2009, 16(6): 7
11 Conrad Hans. Influence of an electric or magnetic field on the liquid-solid transformation in materials and on the microstructure of the solid [J]. Materials Science and Engineering, 2000: 205
12 Chen Q F, Wang J Z. Macrostructures and shape memory effect of cast- state electropulse modified Cu-Al-Ni alloys [J]. Materials Science & Technology, 2001, 9(3): 240
12 陈庆福, 王建中. 电脉冲孕育细化CuAlNi合金的宏观组织与铸态形状记忆效应 [J]. 材料科学与工艺, 2001, 9(3): 240
13 He S X, Wang J, Zhou Y H. Effect of high density pulse electric current on the solidification structure of low temperature melt of A356 aluminium alloy [J]. Acta Metall. Sin., 2002, 38(5): 479
13 何树先, 王 俊, 周尧和. 高密度脉冲电流对A356铝合金低温熔体凝固组织的影响 [J]. 金属学报, 2002, 38(5): 479
14 Masayuki, Nakada, Shiohara Yuh, et al. Modification of solidification structures by pulse electric discharging [J]. ISIJ International, 1990, 30(1): 27
doi: 10.2355/isijinternational.30.27
15 Liao X L, Zhai Q J, Luo J, et al. Refining mechanism of the electric current pulse on the solidification structure of pure aluminum [J]. Acta Materialia, 2007, 55(9): 3103
doi: 10.1016/j.actamat.2007.01.014
16 Li X B, Lu F G, Cui H C, et al. Migration behavior of solidification nuclei in pure Al melt under effect of electric current pulse [J]. Transactions of Nonferrous Metals Society of China, 2014, 24(1): 192
doi: 10.1016/S1003-6326(14)63047-8
17 Barnak J P, Sprecher A F, Conrad H. Colony (grain) size reduction in eutectic Pb-Sn castings by electroplusing [J]. Scripta metallurgica et materialia, 1995, 32(6): 879
doi: 10.1016/0956-716X(95)93218-S
18 Nakada M, Shiohara Y, Flemings M C. Modification of solidification structures by pulse electric discharging [J]. ISIJ international, 1990, 30(1): 27
doi: 10.2355/isijinternational.30.27
19 Misra A K. Effect of electric potentials on solidification of near eutectic Pb-Sb-Sn alloy [J]. Materials Letters, 1986, 4(3): 176
doi: 10.1016/0167-577X(86)90011-X
20 Liao X L, Zhai Q J, Song C J. Effects of electric current pulse on stability of solid/liquid interface of Al-4.5% Cu alloy during directional solidification [J]. Materials Science and Engineering: A, 2007, 466(1): 56
doi: 10.1016/j.msea.2007.02.022
21 Räbiger D, Zhang Y H, Galindo V. The relevance of melt convection to grain refinement in Al-Si alloys solidified under the impact of electric currents [J]. Acta Materialia, 2014, 79: 327
doi: 10.1016/j.actamat.2014.07.037
22 Vashchenko K I, Chernega D F, Vorobev S L. Effect of electric current on the solidification of cast iron [J]. Metal Science and Heat Treatment, 1974, 16(3): 261
doi: 10.1007/BF00663070
23 Feng X H, Yang Y S, Li Y J, et al. Effect of DC field on mechanical property of a Ni-based single crystal superalloy [J]. Acta Metall. Sin., 2006, 42(9): 947
23 冯晓辉, 杨院生, 李应举 等. 直流电流对一种镍基单晶高温合金力学性能的影响 [J]. 金属学报, 2006, 42(9): 947
24 Jiang H X, Zhao J Z, Wang C P. Effect of electric current pulses on solidification of immiscible alloys [J]. Materials Letters, 2014, 132: 66
doi: 10.1016/j.matlet.2014.06.017
25 Tang Y F, Qiu S, Miao Q, et al. Fabrication of lamellar porous alumina with axisymmetric structure by directional solidification with applied electric and magnetic fields [J]. J. Eur. Ceram. Soc., 2016: 36, 1233
doi: 10.1016/j.jeurceramsoc.2015.12.012
26 Li C S, Hu S D, Ren Z M, et al. Effect of the simultaneous application of a high static magnetic field and a low alternating current on grain structure and grain boundary of pure aluminum, J. Mater. Sci. Technol., 2018, 34: 2431
27 Li J Y, Ni P, Wang L, et al. Influence of direct electric current on solidification process of Al-Si alloy [J]. Mater. Sci. Semicon. Proc., 2017, 61: 79
doi: 10.1016/j.mssp.2016.12.034
28 Yang J R, Chen R R, Guo J J, et al. Temperature distribution in bottomless electromagnetic cold crucible applied to directional solidification [J]. Int. J. Heat Mass Tran., 2016, 100: 131
doi: 10.1016/j.ijheatmasstransfer.2016.04.030
29 Yang J R, Chen R R, Su Y Q, et al. Optimization of electromagnetic energy in cold crucible used for directional solidification of TiAl alloy [J]. Energy, 2018, 161(15): 143
doi: 10.1016/j.energy.2018.07.076
30 Erdely P, Staron P, Maawad E, et al. Design and control of microstructure and texture by thermomechanical processing of a multi-phase TiAl alloy [J]. Mater. Des. 2017, 131(5): 286
doi: 10.1016/j.matdes.2017.06.030
31 Wang G T, Ding H S, Chen R R, et al. Intermetallics prepared by directional solidification electromagnetic cold crucible technique [J]. Acta Metall. Sin., 2017, 53(11): 1461
31 王国田, 丁宏升, 陈瑞润 等. 电流强度对冷坩埚定向凝固Ni3Al金属间化合物微观组织的影响 [J]. 金属学报, 2017, 53(11): 1461
32 Zhang T B, Wu Z E, Hu R, et al. Influence of nitrogen on the microstructure and solidification behavior of high Nb containing TiAl alloys [J]. Mater. Des. 2016, 103(5): 100
doi: 10.1016/j.matdes.2016.04.071
33 Gao M, He G H, Yang F. Effect of electric current pulse on tensile strength and elongation of casting ZA27 alloy [J]. Mater. Sci. Eng, 2002, (337): 110
34 Inui H, Oh M H, Nakamura A. Room temperature tensile deformation of polysynthecally twinned (PST) crystals of TiAl [J]. Acta Metall Mater, 1992, 40: 3095
doi: 10.1016/0956-7151(92)90472-Q
35 Guo J J, Wang G T, Meng F Y. Microstructure and properties of Ti-(43-48)Al-2Cr-2Nb alloy prepared by directional solidification [J]. Chinese Journal of Materials Research, 2020, 34(7): 554
doi: 10.11901/1005.3093.2020.028
35 郭俊杰, 王国田, 孟凡英. 定向凝固Ti-(43-48)Al-2Cr-2Nb合金的显微组织和性能 [J]. 材料研究学报, 2020, 34(7): 554
doi: 10.11901/1005.3093.2020.028
36 Witusiewicz V T, Bondar A A, Hecht U. Thermodynamic re-modelling of theternary Al-Cr-Ti system with refined Al-Cr description [J]. Journal of Alloys and Compounds, 2015, 644: 939
doi: 10.1016/j.jallcom.2015.04.231
37 Zhen L, Shao W Z, Yang D Z. Microscopic Theory of Strength and Fracture of Crystal Materials [M]. Beijing: Science Press, 2018: 5
37 甄 良, 邵文柱, 杨德庄. 晶体材料强度与断裂的微观理论 [M]. 北京: 科学出版社, 2018: 5
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.