Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (7): 511-518    DOI: 10.11901/1005.3093.2021.166
  研究论文 本期目录 | 过刊浏览 |
磨粒刮擦诱导单晶镍微结构演化与塑性去除行为的纳观分析
陈晶晶1(), 邱小林2, 李柯1, 袁军军1, 周丹1, 刘亦薇1
1.南昌理工学院机电工程学院 南昌 330044
2.南昌理工学院 江西省光电材料重点实验室 南昌 330044
Microstructure Evolution and Plastic Removal for Single Crystal Nickel Induced by Particle Scratching: Atomic Simulation Method
CHEN Jingjing1(), QIU Xiaolin2, LI Ke1, YUAN Junjun1, ZHOU Dan1, LIU Yiwei1
1.School of Mechanical and Electrical Engineering, Nanchang Institute of Technology, Nanchang 330044, China
2.College of Electrical and Mechanical Engineering, Key Laboratory of Optoelectronic Material of Jiangxi Province, Nanchang 330044, China
引用本文:

陈晶晶, 邱小林, 李柯, 袁军军, 周丹, 刘亦薇. 磨粒刮擦诱导单晶镍微结构演化与塑性去除行为的纳观分析[J]. 材料研究学报, 2022, 36(7): 511-518.
Jingjing CHEN, Xiaolin QIU, Ke LI, Junjun YUAN, Dan ZHOU, Yiwei LIU. Microstructure Evolution and Plastic Removal for Single Crystal Nickel Induced by Particle Scratching: Atomic Simulation Method[J]. Chinese Journal of Materials Research, 2022, 36(7): 511-518.

全文: PDF(3734 KB)   HTML
摘要: 

基于分子动力学模拟,从原子水平研究了单晶镍刮擦诱导的微结构演变和塑性去除,重点分析了不同晶面的微结构演变特征和塑性去除差异,阐明了在滑动刮擦和滚动刮擦工况下塑性的去除规律,揭示了微结构演化和塑性去除的机制。结果表明,在紧密接触区产生的应力集中不仅是单晶镍位错滑移的源动力,而且是FCC结构向HCP结构转变和材料塑性去除产生磨屑的主因。发生磨粒刮擦时Ni(110)晶面出现最大的水平切向力,磨粒刮擦时在Ni(110)晶面内形成了具有水平滑移特征的HCP结构,其中位错滑移是其磨屑比Ni(100)和Ni(111)晶面多的主因。在同等刮擦条件下,Ni(110)晶面的塑性环脱落行为滞后。同时,密排堆垛层错行为和磨损表面的剪切应变都表现出显著的晶面选择性。与滑动刮擦相比,滚动刮擦时镍原子显著地粘附于磨粒的外表面,是切向力在刮擦过程中大幅度振荡的主要原因。

关键词 金属材料单晶镍微结构演化塑性环原子模拟塑性去除    
Abstract

The microstructure evolution and plastic removal induced by particle scratching for single crystal nickel were investigated by means of molecular dynamics simulation at the atomic level, meanwhile, the characteristics of microstructure evolution and the difference of plastic removal of different crystal surfaces were analyzed. The results show that the stress concentration in the close contact zone is not only the motivity for dislocation slip of single crystal nickel, but also the main cause of the transition from FCC structure to HCP structure and the plastic removal of the material. During abrasive particle scraping, the maximum horizontal tangential force appears on the Ni(110) crystal surface, correspondingly, the HCP structure with horizontal slip characteristics may form in the Ni(110) crystal plane, as a result, the dislocation slip may mainly be responsible to that the quantity of debris on the Ni(100) plane is more than that on the Ni(111) plane. Therefore, by the same level of particle scraping, the hysteresis of plastic ring abscission on Ni(110) crystal surface may emerge. At the same time, both the occurrence of stacking fault and the shear strain of the worn surface show remarkable crystal facet selectivity. Compared with the case of sliding scraping, the nickel atoms adhere to the outer surface of the abrasive particles significantly during rolling scraping, which is the main reason for the large oscillation of the tangential force during the scraping process.

Key wordsmetallic materials    nickel substrate    mmicro-structure evolution    plastic loop    atomic simulation    plastic removal
收稿日期: 2021-03-05     
ZTFLH:  TH117  
基金资助:南昌理工学院机械表/界面摩擦磨损与防护润滑校级研究中心及江西省教育厅科学技术研究项目(GJJ212101);南昌理工学院机械表/界面摩擦磨损与防护润滑校级研究中心及江西省教育厅科学技术研究项目(GJJ219310);南昌市重点实验室建设项目(2020-NCZDSY-005)
作者简介: 陈晶晶,男,1989年生,硕士
图1  刚性磨粒刮擦单晶镍的纳观物理模型
Physical quantityNickelRigid particle
Dimension

6 nm×10 nm×6 nm

(Lx ×Ly ×Lz )

R=4 nm
Lattice constant0.353 nm0.3567 nm
Temperature300 K
Depth2.5 nm
Time step1 fs
Scratch velocity100 m/s
Rotation period10 ps
Sliding distance8 nm
表1  MD模拟参数的设置
图2  滑动距离为8 nm时不同晶面的剪切应变
图3  在不同温度下Ni(111)晶面刮擦诱导的剪切应变
图4  镍单晶的不同晶面以及在不同温度下的磨屑数量和切向力随滑动距离的变化
图5  在不同温度下经磨粒刮擦后单晶镍的径向分布函数、在滑动和滚动作用下切向力的演化以及滚动刮擦距离为1.2 nm和6 nm时的磨粒形貌
图6  刮擦诱导的单晶镍不同晶面微结构的演变
图7  单晶镍不同晶面刮擦后微结构的演化
图8  刮擦后镍单晶不同晶面的塑性变形和材料去除
图9  不同晶面的HCP原子占比和(HCP+Other)总原子占比随刮擦距离的变化
1 Priya B, Malhotra J. 5GAuNetS: an autonomous 5G network selection framework for Industry 4.0 [J]. Soft Comput., 2020, 24: 9507
doi: 10.1007/s00500-019-04460-y
2 Messaoud S, Bradai A, Moulay E. Online GMM clustering and mini-batch gradient descent based optimization for industrial IoT 4.0 [J]. IEEE Trans. Ind. Inform., 2020, 16: 1427
3 Niu Z C, Cheng K. An experimental investigation on surface generation in ultraprecision machining of particle reinforced metal matrix composites [J]. Int. J. Adv. Manuf. Technol., 2019, 105: 4499
doi: 10.1007/s00170-018-03256-y
4 Gao B, Zhai W J. Material removal rate of 4H-SiC polishing with polystyrene/CeO2 core/shell abrasives [J]. ECS J. Solid State Sci. Technol., 2020, 9: 104001
doi: 10.1149/2162-8777/abba03
5 Zhao K, Aghababaei R. Interfacial plasticity controls material removal rate during adhesive sliding contact [J]. Phys. Rev. Mater., 2020, 4: 103605
6 Dong Y, Lei H, Liu W Q. Effect of mixed-shaped silica sol abrasives on surface roughness and material removal rate of zirconia ceramic cover [J]. Ceram. Int., 2020, 46: 23828
doi: 10.1016/j.ceramint.2020.06.159
7 Juan C C, Tsai M H, Tsai C W, et al. Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining [J]. Mater. Lett., 2016, 184: 200
doi: 10.1016/j.matlet.2016.08.060
8 Jamie D G, Ryu I. Latent hardening/softening behavior in tension and torsion combined loadings of single crystal FCC micropillars [J]. Acta Mater., 2020, 190: 58
doi: 10.1016/j.actamat.2020.02.030
9 Lee S, Aviral V, Im J, et al. In-situ observation of the initiation of plasticity by nucleation of prismatic dislocation loops [J]. Nat. Commun., 2020, 11: 2367
doi: 10.1038/s41467-020-15775-y
10 Xiang H G, Li H T, Fu T, et al. Formation of prismatic loops in AlN and GaN under nanoindentation [J]. Acta Mater., 2017, 138: 131
doi: 10.1016/j.actamat.2017.06.045
11 Wang J S, Zhang X D, Fang F Z, et al. A numerical study on the material removal and phase transformation in the nanometric cutting of silicon [J]. Appl. Surf. Sci., 2018, 455: 608
doi: 10.1016/j.apsusc.2018.05.091
12 Yue X M, Yang X D. Molecular dynamics simulation of material removal process and mechanism of EDM using a two-temperature model [J]. Appl. Surf. Sci., 2020, 528: 147009
doi: 10.1016/j.apsusc.2020.147009
13 Nguyen V T, Fang T H. Material removal and wear mechanism in abrasive polishing of SiO2/SiC using molecular dynamics [J]. Ceram. Int., 2020, 46: 21578
doi: 10.1016/j.ceramint.2020.05.263
14 Liu Y, Li B Z, Kong L F. A molecular dynamics investigation into nanoscale scratching mechanism of polycrystalline silicon carbide [J]. Comput. Mater. Sci., 2018, 148: 76
doi: 10.1016/j.commatsci.2018.02.038
15 Wang G L, Feng Z J, Zheng Q C, et al. Molecular dynamics simulation of nano-polishing of single crystal silicon on non-continuous surface [J]. Mater. Sci. Semicond. Process., 2020, 118: 105168
doi: 10.1016/j.mssp.2020.105168
16 Lai M, Zhang X D, Fang F Z. Nanoindentation-induced phase transformation and structural deformation of monocrystalline germanium: a molecular dynamics simulation investigation [J]. Nanoscale Res. Lett., 2013, 8: 353
doi: 10.1186/1556-276X-8-353
17 Chen J J, Weng S B, Wu H. Effects of mechanism analysis for spherical contact pair on contact deformation in copper film from nano-perspective [J]. China Surf. Eng., 2021, 34(4): 99
17 陈晶晶, 翁盛槟, 吴 昊. 基于球面触点接触模式的铜膜纳观变形探析 [J]. 中国表面工程, 2021, 34(4): 99
18 Sharma A, Datta D, Balasubramaniam R. Molecular dynamics simulation to investigate the orientation effects on nanoscale cutting of single crystal copper [J]. Comput. Mater. Sci., 2018, 153: 241
doi: 10.1016/j.commatsci.2018.07.002
19 Liu B, Fang F Z, Li R, et al. Experimental study on size effect of tool edge and subsurface damage of single crystal silicon in nano-cutting [J]. Int. J. Adv. Manuf. Technol., 2018, 98: 1093
doi: 10.1007/s00170-018-2310-5
20 Imran M, Hussain F, Rashid M, et al. Molecular dynamics study of the mechanical characteristics of Ni/Cu bilayer using nanoindentation [J]. Chin. Phys., 2012, 21B: 126802
21 Foiles S M, Baskes M I, Daw M S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys [J]. Phys. Rev., 1988, 33B: 10378
22 Morse P M. Diatomic molecules according to the wave mechanics. Ⅱ: Vibrational levels [J]. Phys. Rev., 1929, 34: 57
doi: 10.1103/PhysRev.34.57
23 Qian Y, Shang F L, Wan Q, et al. A molecular dynamics study on indentation response of single crystalline wurtzite GaN [J]. J. Appl. Phys., 2018, 24: 115102
24 Li Y C, Jiang W G, Zhou Y. Molecular dynamics simulation on shear mechanical properties of single crystal/polycrystalline Ni composites [J]. Chin. J. Nonferrous Met., 2020, 30: 1837
24 李源才, 江五贵, 周 宇. 单晶/多晶镍复合体剪切过程分子动力学模拟 [J]. 中国有色金属学报, 2020, 30: 1837
25 Guo J, Chen J J, Wang Y Q. Temperature effect on mechanical response of c-plane monocrystalline gallium nitride in nanoindentation: A molecular dynamics study [J]. Ceram. Int., 2020, 46: 12686
doi: 10.1016/j.ceramint.2020.02.035
26 Zhang Z B, Yang Z B, Lu S, et al. Strain localisation and failure at twin-boundary complexions in nickel-based superalloys [J]. Nat. Commun., 2020, 11: 4890
doi: 10.1038/s41467-020-18641-z
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.