|
|
磨粒刮擦诱导单晶镍微结构演化与塑性去除行为的纳观分析 |
陈晶晶1( ), 邱小林2, 李柯1, 袁军军1, 周丹1, 刘亦薇1 |
1.南昌理工学院机电工程学院 南昌 330044 2.南昌理工学院 江西省光电材料重点实验室 南昌 330044 |
|
Microstructure Evolution and Plastic Removal for Single Crystal Nickel Induced by Particle Scratching: Atomic Simulation Method |
CHEN Jingjing1( ), QIU Xiaolin2, LI Ke1, YUAN Junjun1, ZHOU Dan1, LIU Yiwei1 |
1.School of Mechanical and Electrical Engineering, Nanchang Institute of Technology, Nanchang 330044, China 2.College of Electrical and Mechanical Engineering, Key Laboratory of Optoelectronic Material of Jiangxi Province, Nanchang 330044, China |
引用本文:
陈晶晶, 邱小林, 李柯, 袁军军, 周丹, 刘亦薇. 磨粒刮擦诱导单晶镍微结构演化与塑性去除行为的纳观分析[J]. 材料研究学报, 2022, 36(7): 511-518.
Jingjing CHEN,
Xiaolin QIU,
Ke LI,
Junjun YUAN,
Dan ZHOU,
Yiwei LIU.
Microstructure Evolution and Plastic Removal for Single Crystal Nickel Induced by Particle Scratching: Atomic Simulation Method[J]. Chinese Journal of Materials Research, 2022, 36(7): 511-518.
1 |
Priya B, Malhotra J. 5GAuNetS: an autonomous 5G network selection framework for Industry 4.0 [J]. Soft Comput., 2020, 24: 9507
doi: 10.1007/s00500-019-04460-y
|
2 |
Messaoud S, Bradai A, Moulay E. Online GMM clustering and mini-batch gradient descent based optimization for industrial IoT 4.0 [J]. IEEE Trans. Ind. Inform., 2020, 16: 1427
|
3 |
Niu Z C, Cheng K. An experimental investigation on surface generation in ultraprecision machining of particle reinforced metal matrix composites [J]. Int. J. Adv. Manuf. Technol., 2019, 105: 4499
doi: 10.1007/s00170-018-03256-y
|
4 |
Gao B, Zhai W J. Material removal rate of 4H-SiC polishing with polystyrene/CeO2 core/shell abrasives [J]. ECS J. Solid State Sci. Technol., 2020, 9: 104001
doi: 10.1149/2162-8777/abba03
|
5 |
Zhao K, Aghababaei R. Interfacial plasticity controls material removal rate during adhesive sliding contact [J]. Phys. Rev. Mater., 2020, 4: 103605
|
6 |
Dong Y, Lei H, Liu W Q. Effect of mixed-shaped silica sol abrasives on surface roughness and material removal rate of zirconia ceramic cover [J]. Ceram. Int., 2020, 46: 23828
doi: 10.1016/j.ceramint.2020.06.159
|
7 |
Juan C C, Tsai M H, Tsai C W, et al. Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining [J]. Mater. Lett., 2016, 184: 200
doi: 10.1016/j.matlet.2016.08.060
|
8 |
Jamie D G, Ryu I. Latent hardening/softening behavior in tension and torsion combined loadings of single crystal FCC micropillars [J]. Acta Mater., 2020, 190: 58
doi: 10.1016/j.actamat.2020.02.030
|
9 |
Lee S, Aviral V, Im J, et al. In-situ observation of the initiation of plasticity by nucleation of prismatic dislocation loops [J]. Nat. Commun., 2020, 11: 2367
doi: 10.1038/s41467-020-15775-y
|
10 |
Xiang H G, Li H T, Fu T, et al. Formation of prismatic loops in AlN and GaN under nanoindentation [J]. Acta Mater., 2017, 138: 131
doi: 10.1016/j.actamat.2017.06.045
|
11 |
Wang J S, Zhang X D, Fang F Z, et al. A numerical study on the material removal and phase transformation in the nanometric cutting of silicon [J]. Appl. Surf. Sci., 2018, 455: 608
doi: 10.1016/j.apsusc.2018.05.091
|
12 |
Yue X M, Yang X D. Molecular dynamics simulation of material removal process and mechanism of EDM using a two-temperature model [J]. Appl. Surf. Sci., 2020, 528: 147009
doi: 10.1016/j.apsusc.2020.147009
|
13 |
Nguyen V T, Fang T H. Material removal and wear mechanism in abrasive polishing of SiO2/SiC using molecular dynamics [J]. Ceram. Int., 2020, 46: 21578
doi: 10.1016/j.ceramint.2020.05.263
|
14 |
Liu Y, Li B Z, Kong L F. A molecular dynamics investigation into nanoscale scratching mechanism of polycrystalline silicon carbide [J]. Comput. Mater. Sci., 2018, 148: 76
doi: 10.1016/j.commatsci.2018.02.038
|
15 |
Wang G L, Feng Z J, Zheng Q C, et al. Molecular dynamics simulation of nano-polishing of single crystal silicon on non-continuous surface [J]. Mater. Sci. Semicond. Process., 2020, 118: 105168
doi: 10.1016/j.mssp.2020.105168
|
16 |
Lai M, Zhang X D, Fang F Z. Nanoindentation-induced phase transformation and structural deformation of monocrystalline germanium: a molecular dynamics simulation investigation [J]. Nanoscale Res. Lett., 2013, 8: 353
doi: 10.1186/1556-276X-8-353
|
17 |
Chen J J, Weng S B, Wu H. Effects of mechanism analysis for spherical contact pair on contact deformation in copper film from nano-perspective [J]. China Surf. Eng., 2021, 34(4): 99
|
17 |
陈晶晶, 翁盛槟, 吴 昊. 基于球面触点接触模式的铜膜纳观变形探析 [J]. 中国表面工程, 2021, 34(4): 99
|
18 |
Sharma A, Datta D, Balasubramaniam R. Molecular dynamics simulation to investigate the orientation effects on nanoscale cutting of single crystal copper [J]. Comput. Mater. Sci., 2018, 153: 241
doi: 10.1016/j.commatsci.2018.07.002
|
19 |
Liu B, Fang F Z, Li R, et al. Experimental study on size effect of tool edge and subsurface damage of single crystal silicon in nano-cutting [J]. Int. J. Adv. Manuf. Technol., 2018, 98: 1093
doi: 10.1007/s00170-018-2310-5
|
20 |
Imran M, Hussain F, Rashid M, et al. Molecular dynamics study of the mechanical characteristics of Ni/Cu bilayer using nanoindentation [J]. Chin. Phys., 2012, 21B: 126802
|
21 |
Foiles S M, Baskes M I, Daw M S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys [J]. Phys. Rev., 1988, 33B: 10378
|
22 |
Morse P M. Diatomic molecules according to the wave mechanics. Ⅱ: Vibrational levels [J]. Phys. Rev., 1929, 34: 57
doi: 10.1103/PhysRev.34.57
|
23 |
Qian Y, Shang F L, Wan Q, et al. A molecular dynamics study on indentation response of single crystalline wurtzite GaN [J]. J. Appl. Phys., 2018, 24: 115102
|
24 |
Li Y C, Jiang W G, Zhou Y. Molecular dynamics simulation on shear mechanical properties of single crystal/polycrystalline Ni composites [J]. Chin. J. Nonferrous Met., 2020, 30: 1837
|
24 |
李源才, 江五贵, 周 宇. 单晶/多晶镍复合体剪切过程分子动力学模拟 [J]. 中国有色金属学报, 2020, 30: 1837
|
25 |
Guo J, Chen J J, Wang Y Q. Temperature effect on mechanical response of c-plane monocrystalline gallium nitride in nanoindentation: A molecular dynamics study [J]. Ceram. Int., 2020, 46: 12686
doi: 10.1016/j.ceramint.2020.02.035
|
26 |
Zhang Z B, Yang Z B, Lu S, et al. Strain localisation and failure at twin-boundary complexions in nickel-based superalloys [J]. Nat. Commun., 2020, 11: 4890
doi: 10.1038/s41467-020-18641-z
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|