材料研究学报, 2022, 36(3): 206-212 DOI: 10.11901/1005.3093.2021.265

研究论文

基于Si掺杂增强光吸收提升Li2SnO3 光催化降解四环素的研究

李园园,1, 曾寒露1, 蒲红争1, 蒋明珠1, 王仲明1, 杨怡萌1, 公祥南2

1.重庆第二师范学院生物与化学工程学院 重庆 400067

2.重庆大学分析测试中心 重庆 401331

Photocatalytic Degradation of Tetracycline by Si Doped Li2SnO3

LI Yuanyuan,1, ZENG Hanlu1, PU Hongzheng1, JIANG Mingzhu1, WANG Zhongming1, YANG Yimeng1, GONG Xiangnan2

1.College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China

2.Analytical and Testing Center of Chongqing University, Chongqing 401331, China

通讯作者: 李园园,liyy@cquee.edu.cn,研究方向为环境化学、催化化学

收稿日期: 2021-04-25   修回日期: 2021-07-13  

基金资助: 重庆英才创新创业示范团队.  CQYC201903178
重庆市重庆市教育委员会科学技术研究项目.  KJQN202001613.  KJQN201901619
教育部学校规划建设发展中心重庆第二师范学院儿童研究院课题.  CSDP19FS01204
重庆第二师范学院国家自科基金校级培育项目.  18GZKP01
重庆第二师范学院大学生科研项目.  KY20200138

Corresponding authors: LI Yuanyuan, Tel: 15902305519, E-mail:liyy@cque.edu.cn

Received: 2021-04-25   Revised: 2021-07-13  

作者简介 About authors

李园园,女,1985年生,副教授

摘要

在Li2SnO3中掺杂Si,研究了Si掺杂Li2SnO3对四环素的光催化降解性能。结果表明,对Li2SnO3进行等电子Si掺杂使其光学吸收带隙减小和光吸收系数增大,提高了对四环素的光催化降解效率。等电子Si掺杂Li2SnO3为纯相不规则块状固体,随着Si掺杂量的增加其晶格参数呈减小的趋势。Si掺杂使样品的光催化性能显著提高。Si掺杂量为10%的样品,在紫外光照射25 min后光催化降解效率为75.8%,约为母体的2倍。Si掺杂Li2SnO3的光催化降解行为满足赝一级动力学模型,拟合速率常数为0.02464 min-1。在Si掺杂Li2SnO3的价带顶形成的Si-O键减少了光学吸收带隙,使其光吸收能力增强。Si掺杂Li2SnO3的光催化降解机制,属于空穴主导型。

关键词: 无机非金属材料 ; Si掺杂 ; 光催化 ; 能带计算 ; 四环素

Abstract

The photocatalytic degradation of tetracycline by Si-doped Li2SnO3 was investigated. The results show that, through iso-electron Si doping the optical absorption band gap of Li2SnO3 may be reduced, while its optical absorption coefficient is increased, in consequence, the photocatalytic degradation efficiency of the Si-doped Li2SnO3 fortetracycline is enhanced. The isoelectronicaly Si-doped Li2SnO3 is a pure and irregular mass solid, and its lattice parameters tend to decrease with the increase of Si doping amount. The photocatalytic performance of the Si-doped Li2SnO3 was significantly improved by Si doping. Under UV irradiation for 25 min, the photocatalytic degradation efficiency of tetracycline by the Si 10%-doped Li2SnO3 is 75.8%, which is about twice as that by the simple Li2SnO3. The photocatalytic degradation behavior of Si-doped Li2SnO3 conforms to the pseudo-first-order kinetic model, and the fitting rate constant is 0.02464 min-1. The Si-O bond formed on the top of the valence band of Si-doped Li2SnO3 reduces the optical absorption band gap and enhances its optical absorption capacity. The photocatalytic degradation mechanism of Si-doped Li2SnO3 is cave-dominated.

Keywords: inorganic non-metallic materials ; Si doping ; photocatalysis ; band gap calculation ; tetracycline

PDF (5283KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李园园, 曾寒露, 蒲红争, 蒋明珠, 王仲明, 杨怡萌, 公祥南. 基于Si掺杂增强光吸收提升Li2SnO3 光催化降解四环素的研究. 材料研究学报[J], 2022, 36(3): 206-212 DOI:10.11901/1005.3093.2021.265

LI Yuanyuan, ZENG Hanlu, PU Hongzheng, JIANG Mingzhu, WANG Zhongming, YANG Yimeng, GONG Xiangnan. Photocatalytic Degradation of Tetracycline by Si Doped Li2SnO3. Chinese Journal of Materials Research[J], 2022, 36(3): 206-212 DOI:10.11901/1005.3093.2021.265

抗生素广泛应用于医疗、畜牧业、水产业等领域,排放或残留在水或土壤中对生态环境和人类健康构成严重威胁[1~3]。光催化氧化技术,是去除水体中抗生素的一种重要手段[4,5]。光催化材料的吸收系数决定其吸光性能,掺杂可调控其光吸收性能[6]。Hu等[7]用金属或非金属掺杂将TiO2的吸收光谱扩展到可见光范围;Xie等[8]在In2S3原子层中掺杂Co离子引入杂质能级使其载流子浓度提高,极大地提高了材料的可见光吸收性能;Huang等[9]用CO32-自掺杂Bi2O2CO3形成掺杂能级使其导带降低,提高了光催化净化NO的性能。翟等[10]用Cu掺杂TiO2在禁带中形成掺杂能级减小其带隙,利用可见光提高光催化合成氨的性能。

锂族化合物半导体具有良好的电学性能,其广阔的应用前景受到极大的关注。Li2SnO3块状材料,是一种电池材料和光电材料[11~15]。Li2SnO3具有良好的载流子分离效率,但是其光学吸收带隙较宽。用掺杂调控光吸收能力,可提高对材料的光催化降解效率。本文用固相烧结制备Li2Sn1-x Si x O3(x=0,0.05,0.10),研究其对光催化降解四环素效率。

1 材料制备和计算方法

1.1 Li2Sn1-x Si x O3(x=00.050.1)的制备

采用固相烧结法制备Li2Sn1-x Si x O3(x=0,0.05,0.1)。以Li2Sn1-x Si x O3(x=0.1)为例。用玛瑙研钵将3.3 mmol的碳酸锂(Li2CO3,纯度99.90%)2.70 mmol 的二氧化锡(SnO2,纯度99.5%)和0.30 mmol的二氧化硅(SiO2,纯度98.5%)研磨30 min后置于坩埚,然后放入温度为850℃的高温马弗炉(型号XL-6A)中烧结烧结10 h,烧结结束后自然冷却至室温。取出样品将其研磨10 min后进行二次烧结,烧结温度为850℃,时间为10 h,烧结结束后自然冷却至室温。用相同的方法制备其余样品,得到一系列催化剂。样品的编号:Li2SnO3记为LSO,Li2Sn0.95Si0.05O3记为LSSO-5,Li2Sn0.90Si0.10O3记为LSSO-10。

1.2 光催化剂的表征

使用X射线衍射仪(岛津XRD—7000)测试粉末样品的XRD谱,Cu 靶(40 kV和40 mA),步长为0.0262°,每步时长30 S,扫描范围10~80°;用紫外分光光度计(岛津UV-2550)测试四环素盐酸盐(TC,纯度99.90%)溶液的紫外可见吸收光谱;用JEOL JSM-6700F场发射扫描电子显微镜观察材料的表面结构。

在500 W汞灯(型号:CEL-M500)紫外光的照射下,以TC为模拟污染物来评价Li2Sn1-x Si x O3(x=0,0.05,0.1)的光催化活性。在光催化反应过程中,反应液面离光源的距离为20 cm,光功率密度为100 mW/cm2。先将30 mg光催化剂Li2Sn1-x Si x O3放入浓度为20 mg/L的TC溶液(100 mL)中,进行暗吸附60 min使其达到吸附与脱附平衡。然后开启光源,每隔5 min取5 mL上清液,使用离心机(型号:TG-16)将其离心分离后在TC的最大吸收波长357 nm处测其吸光度。以溶液的降解率C/C0=A/A0(CC0分别为光照后溶液的浓度和初始溶液的浓度,A和A0分别为光照后溶液的吸光度和初始溶液的吸光度)评价光催化剂的活性。

自由基捕获实验:加入10 mL的异丙醇(IPA,纯度99.7%),0.1 mmol 的2,2,6,6-四甲基哌啶醇(TEMPO,纯度98%)和0.1 mmol的乙二胺四乙酸(EDTA,纯度99.5%)分别检测·OH、·O2-和h+

1.3 理论计算方法

使用第一原理软件VASP计算几何结构优化和电子结构[16]。为了对比Si掺杂前后的电子结构,构筑了2×1×1的超胞且设定了Si的掺杂量6.25%。为了计算电子结构,用共轭梯度方法进行结构优化,能量收敛标准为10-6 eV。选用PAW赝势和GGA交换关联泛函[17],动能的截断能设置为550 eV,布里渊积分的K点网格设置为9×9×9[18],电子自洽能设置为10-6 eV。

2 结果和讨论

2.1 物相分析

图1a给出了Li2Sn1-x Si x O3(x=0,0.05,0.10)的XRD谱。Li2SnO3为单斜相,其空间群为C2/c。从衍射谱中角度为17.950°,34.413°,35.961°,41.883°,45.905°,55.526°,60.991°和63.657°的衍射峰对应Li2SnO3的晶面分别为(002),(200),(131),(-133),(133),(-135),(135)和(331)[19]。Si掺杂的样品与母体Li2SnO3保持一致。晶胞参数计算结果(表1)表明,随着Si掺杂量的增加晶胞体积呈下降趋势。图1b给出了Li2SnO3的扫描电镜图片,可见用固相烧结法制备的Li2SnO3呈无规则块状且其尺寸大小不均一,颗粒的平均尺寸为1.32 µm。

图1

图1   Li2Sn1-x Si x O3(x=0,0.05,0.1)的XRD谱(a)和LSO的SEM照片(b)

Fig.1   XRD patterns of Li2Sn1-x Si x O3(x=0, 0.05, 0.1) (a) and SEM photograph of LSO (b)


表1   Li2Sn1-x Si x O3(x=0,0.05,0.1)的晶格参数

Table 1  Lattice parameters of Li2Sn1-x Si x O3 (x=0,0.05,0.1)

SamplesLattice parameters/nmLattice volume/nm3
Li2SnO3a=0.52950b=0.91840c=1.00320V=0.48024
Li2Sn0.95Si0.05O3a=0.53001b=0.91695c=1.00143V=0.47923075
Li2Sn0.90Si0.10O3a=0.53007b=0.91625c=1.00157V=0.47919176

新窗口打开| 下载CSV


2.2 漫反射光谱

图2a给出了样品的紫外可见漫反射谱。可以看出,在紫外光范围内LSO和LSSO-10均有明显的吸收。随着Si的掺杂出现红移且在300~400 nm范围内吸收系数增加。图2b给出了LSO和LSSO-10相应的(αhv)2hv的关系曲线图,以此计算出LSO和LSSO-10的禁带能分别为3.80 eV和3.75 eV。与LSO相比,LSSO-10的带隙宽度略小。

图2

图2   LSO和LSSO-10的UV-vis漫反射谱(a)以及LSO和LSSO-10的(αhv)2hv的关系(b)

Fig.2   UV-vis diffuse reflectance profiles of LSO and LSSO-10 (a) and relationship between (αhv)2 and hv of LSO and LSSO-10 (b)


2.3 光催化性能

图3a所示的空白实验结果表明,在光照25 min后TC自降解率约为12.1%。在25 min内LSO,LSSO-5,LSSO-10对TC的降解率分别为36.3%,69.4%和75.8%。这表明,Si掺杂使光催化效率明显提高。图3b给出了对应的每隔一定时间的TC紫外吸收曲线谱。可以看出,随着辐射时间的增加TC溶液的吸收光谱逐渐下降。

图3

图3   Li2Sn1-x Si x O3(x=0,0.05,0.1)的光催化降解TC图(a)、Li2Sn0.90Si0.10O3 UV下光催化降解TC的紫外吸收光谱(b)、光催化降解TC的一阶动力学线性拟合(c)以及TC光降解拟合的动力学常数(d)

Fig.3   Photocatalytic degradation of TC by Li2Sn1-x SiSiO3(x=0,0.05, 0.1) (a), UV absorption spectrum of Li2Sn0.90Si0.10O3 UV photocatalytic degradation of TC (b), First-order kinetic linear fitting of photocatalytic degradation of TC (c) and Kinetic constant fitting of photodegradation of TC (d)


可用赝一级动力学模型

lnCt=-kt+lnC0

描述催化剂的光催化降解动力学 [20~22]。其中C0为TC溶液的初始浓度,Ct为每隔一定光照时间后TC溶液的浓度,t为光照时间(min),k为表观一阶反应速率常数(min-1)。图3c给出了ln(C0/C)随紫外光照射时间的线性拟合曲线图。从图3d可以看出,LSSO-10的动力学常数最大,为0.02464 min-1,约为母体LSO的2倍。

2.4 自由基的捕获

进一步,进行自由基捕获实验以揭示光催化降解机制。如图4所示,分别添加0.1 mmol EDTA,10 ml IPA和0.1 mmol TEMPO后,光催化效率分别为0.73643%、0.51648%和0.67508%。这表明,EDTA和TEMPO的引入抑制了TC溶液的光催化降解效率,其中EDTA的抑制效果显著,而IPA对光催化几乎没有影响,表明催化反应的主要活性物种是h+·O2-起次要作用。

图4

图4   LSSO-10降解TC溶液活性自由基捕获实验

Fig.4   Capture experiment of active free radical in LSSO-10 degradation of TC solution


2.5 理论计算

为了更好地理解Si掺杂样品光催化性能的增强,根据第一原理计算Li2SnO3和Li2Sn0.9375Si0.0625O3的电子结构。图5a、b给出了Li2SnO3和Li2Sn0.9375Si0.0625O3的能带图。可以看出,Li2SnO3和Li2Sn0.9375Si0.0625O3均属于直接光学吸收跃迁,价带顶和导带低均处于Γ点。Li2SnO3和Li2Sn0.9375Si0.0625O3的光学吸收带隙分别为3.32 eV和3.28 eV,计算结果略小于从漫反射光谱观察到的结果。Si掺杂使材料的带隙减小,可能是在价带顶形成的杂质能级所致。根据轨道能带图(图6)的计算结果表明,在价带顶形成的杂质能级主要由Si-p,Sn-p,Li-p和O-p轨道占据。

图5

图5   Li2SnO3 (a)和Li2Sn0.9375Si0.0625O3 (b)的能带结构

Fig.5   Energy band structure of Li2SnO3 (a) and Li2Sn0.9375Si0.0625O3 (b)


图6

图6   Li2Sn0.9375Si0.0625O3的轨道能级投影图

Fig.6   Projection diagram of orbital energy levels of Li2Sn0.9375Si0.00625O3


为了进一步理解价带顶形成的杂质能级,计算了Li2SnO3和Li2Sn0.9375Si0.0625O3的电子态密度。从图7a可见,Li2SnO3价带顶主要由O-p轨道构成,而导带底由Sn-s轨道构成。Si掺杂的结果表明,在价带顶形成了新的Si-O,Li-O和Sn-O化学键,从而减小了材料的光学吸收带隙,与能带投影图一致,

图7

图7   Li2SnO3(a)和Li2Sn0.9375Si0.0625O3(b)的电子态密度

Fig.7   Electronic state density of Li2SnO3 (a) and Li2Sn0.9375Si0.0625O3 (b)


2.6 光催化机制

根据热力学分析了在Li2Sn0.90Si0.10O3半导体带边产生光催化活性物种的可能性。半导体的带边EVBECB决定了催化剂的氧化还原能力。根据经验公式(2)和(3) [23~25]

EVB=χ-Ee+0.5Eg
ECB=EVB-Eg

可计算半导体的导带和价带位置。式中χ为半导体的绝对电负性,Eg为禁带宽度,Ee为自由电子的能量(≈4.5 eV)。由此可算出LSO的EVBECB分别为2.41 eV和-1.39 eV,而LSSO-10的EVBECB分别为2.43 eV和-1.32 eV。

基于上述分析提出了Li2Sn0.90Si0.10O3的光催化机理。涉及到半导体光催化氧化降解污染物机制的活性物种,有·OH,·O2-和h+[26~30]。如图8所示,半导体Li2Sn0.90Si0.10O3EVBECB分别为2.43 eV和-1.32 eV。光照导带上的电子将O2还原为·O2-,而h+使TC分子氧化,与自由基捕获实验结果相同。

图8

图8   Li2Sn0.90Si0.10O3光催化剂在紫外光照射下光催化降解TC的机理

Fig.8   Mechanism diagram of photocatalytic degradation of TC by Li2Sn0.90Si0.10O3 photocatalyst under ultraviolet light irradiation


3 结论

用Si掺杂Li2SnO3制备Li2Sn1-x Si x O3(x=0,0.05,0.1),能显著提高其对TC溶液的光催化效率。Li2Sn0.9Si0.1O3样品在25 min内的光催化效率达到最大值(为75.8%),为母体Li2SnO3催化效率的2倍。Si掺杂Li2SnO3在Li2Sn0.9Si0.1O3价带顶形成的杂质能级减小了材料的光学禁带宽度而使光吸收增加,从而提高了材料的光催化效率。在TC的降解中h+起主要作用,而·O2-自由基起次要作用。

参考文献

Wang H L, Zhang L H, Chen Z G, et al.

Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances

[J]. Chemical Society Reviews, 2014, 43: 5234

[本文引用: 1]

Philip Jeeva M., Aravind Usha K., Charuvila T.

Aravindakumar. Emerging contaminants in Indian environmental matrices-A review

[J]. Chemosphere, 2018, 190: 307

Ji L L, Chen W, Duan L, et al.

Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents

[J]. Environ. Sci. Technol, 2009, 43: 2322

[本文引用: 1]

Jin C, Li W, Chen Y S, et al.

Efficient photocatalytic degradation and adsorption of tetracycline over type-II heterojunctions consisting of ZnO nanorods and K-doped exfoliated g-C3N4 nano-sheets

[J]. Industrial & Engineering Chemistry Research, 2020, 59: 2860

[本文引用: 1]

Yan X Q, Yuan K, Lu N, et al..

The interplay of sulfur doping and surface hydroxyl in band gap engineering: Mesoporous sulfur-doped TiO2 coupled with magnetite as a recyclable, efficient, visible light active photocatalyst for water purification

[J]. Applied Catalysis B: Environmental, 2017, 218: 20

[本文引用: 1]

Li Y Y, Diao Y, Wang X Y, et al.

Zn4B6O13: Efficient Borate Photocatalyst with Fast Carrier Separation for Photodegradation of Tetracycline

[J]. Inorganic Chemistry, 2020, 59: 13136

[本文引用: 1]

Hu H Y, Lin Y, Hu Y H.

Phase role of white TiO2 precursor in its reduction to black TiO2

[J]. Physics Letters A, 2019, 383: 2978

[本文引用: 1]

Li M, Tu X L, Wang Y H, et al.

Highly enhanced visible-light-driven photoelectrochemical performance of ZnO-modified In2S3 nanosheet arrays by atomic layer deposition

[J]. Nano-Micro Letters, 2018, 10: 79

[本文引用: 1]

Huang H W, Li X W, Wang J J, et al.

Anionic group self-doping as a promising strategy: band-gap engineering and multi-functional applications of high-performance CO3 2–- doped Bi2O2CO3

[J]. ACS Catalysis, 2015, 5: 4094

[本文引用: 1]

Zhai H J, Kang J W, Wang R, et al.

Study on photocatalytic performance of copper doped titanium dioxide

[J]. Journal of Jilin Normal University (Natural Science Edition) 2020, 41: 6

[本文引用: 1]

翟宏菊, 康静文, 王 然 .

铜掺杂二氧化钛光催化性能研究

[J].吉林师范大学学报(自然科学版), 2020, 41: 6

[本文引用: 1]

Navaratnarajah K, Apostolos K, Alexander C.

Li2SnO3 as a cathode material for lithium-ion batteries: defects, lithium ion diffusion and dopants

[J]. Scientific Reports, 2018, 8: 12621

[本文引用: 1]

Giulio F, Claire V, Izabela C, et al.

SnO2 model electrode cycled in Li-ion battery reveals the formation of Li2SnO3 and Li8SnO6 phases through conversion reactions

[J]. ACS Applied Materials Interfaces, 2018, 10: 8712

Miguel G -T, Javier B, David M, et al.

Li2SnO3 branched nano- and microstructures with intense and broadband white-light emission

[J]. Nano Research, 2019, 12: 441

Li Y Y, Wu M J, Yang D F, et al.

Novel high efficiency layered oxide photocatalyst Li2SnO3 for rhodamine B and tetracycline degradation

[J]. Catalysts, 2019, 9: 712

Cao R P, Wang W D, Zhang J L, et al.

Synthesis and luminescence properties of Li2SnO3:Mn4+ red-emitting phosphor for solid-state lighting

[J]. Journal of Alloys and Compounds, 2017, 704: 124

[本文引用: 1]

Blöchl P. E..

Projector augmented-wave method

[J]. Physical Review B, 1994, 50: 17953

[本文引用: 1]

John P. P, Kieron B, Matthias E.

Generalized gradient approximation made simple

[J]. Phys. Rev. Lett, 1996, 77(18): 3865

[本文引用: 1]

Chadi D.J..

Special points for Brillouin-zone integrations

[J]. Physical Review B, 1977, 16(4): 1746

[本文引用: 1]

Von G.

KF.S, R. H. Die Kristallstruktur von Li2SnO3

[J]. Z. Fuer Anorg Und Allg Chem, 1970, 379: 242

[本文引用: 1]

Jyoti K, Syed M A, Ufana R.

Highly efficient photocatalytic degradation of amido black 10B dye using polycarbazole-decorated TiO2 nanohybrids

[J]. ACS Omega, 2017, 2: 8354

[本文引用: 1]

Li Y Y, Tian X F, Wang Y Q, et al.

In situ construction of a MgSn(OH)6 perovskite/SnO2 type-II heterojunction: a highly efficient photocatalyst towards photodegradation of tetracycline

[J]. Nanomaterials, 2020, 10(1): 53

Xue J J, Ma S S, Zhou Y M, et al.

Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation

[J]. ACS Applied Materials Interfaces, 2015, 7: 9630

[本文引用: 1]

Houlong L Z, Richard G H.

Theoretical perspective of photocatalytic properties of single-layer SnS2

[J]. Physical Review B, 2013, 88: 115314

[本文引用: 1]

Liu G C, Jin Z, Zhang X B, et al.

Hydrothermal synthesis and photocatalytic properties of Cu-doped BiVO4 microplates

[J]. Journal of Inorganic Materials, 2013, 28(03): 287

刘国聪, 金 真, 张喜斌 .

Cu掺杂BiVO4微米片的水热合成和光催化性能

[J]. 无机材料学报, 2013, 28(03): 287

Zhang W H, Ji Q H, Lan H C, et al.

Preparation of ZnTiO3-TiO2 composite photocatalyst and mechanism of photocatalytic degradation of organic pollutants

[J]. Environmental Science, 40(02): 693

[本文引用: 1]

张文海, 吉庆华, 兰华春 .

ZnTiO3-TiO2复合光催化剂的制备及光催化降解有机污染物机制分析

[J].环境科学, 2019, 40(2): 693

[本文引用: 1]

Niu S Y, Zhang R Y, Zhang Z Y, et al..

In situ construction of the BiOCl/Bi2Ti2O7 heterojunction with enhanced visible-light photocatalytic activity

[J]. Inorganic Chemistry Frontiers, 2019, 6: 791

Li M Y, Tang Y B, Shi W L, et al.

Design of visible-light-response core-shell Fe2O3/CuBi2O4 heterojunctions with enhanced photocatalytic activity towards the degradation of tetracycline: Z-scheme photocatalytic mechanism insight

[J]. Inorganic Chemistry Frontiers, 2018, 5: 3148

Chen H Y, He F, Zhang X H, et al.

Photocatalytic reduction performance of palladium-nitrogen co-doped TiO2 films

[J]. Journal of Materials Research, 2017, 31(04): 255

陈海洋, 何 菲, 张旭海 .

钯氮共掺杂TiO2薄膜的光催化还原性能

[J]. 材料研究学报, 2017, 31(04): 255

Chen K S, Li Y, Tian H, et al.

Preparation and photocatalytic activity of Bi4Ti3O12/TiO2 heterojunction

[J]. Journal of Materials Research, 2014, 28(07): 503

陈侃松, 黎 旸, 田 寒 .

Bi4Ti3O12/TiO2异质结的制备及其光催化性能

[J]. 材料研究学报, 2014, 28(07): 503

Cheng T, Dong P Y, Gao X, et al.

Preparation of CsTi2NbO7@N-TiO2 hybrid core-shell structure and its visible light catalytic activity

[J]. Journal of Materials Research, 2021, 35(03): 221

程 婷, 董鹏玉, 高 欣 .

CsTi2NbO7@N-TiO2杂化核壳结构的制备及其可见光催化性能

[J].材料研究学报, 2021, 35(03): 221

/