|
|
CsPbI2Br无机钙钛矿太阳能电池稳定性的研究进展 |
吴巧凤1, 张富1, 于月1, 张萌1, 于华1( ), 樊栓狮2( ) |
1.西南石油大学光伏产业技术研究院 成都 610500 2.华南理工大学传热强化与过程节能教育部重点实验室 广州 510640 |
|
Research Progress on Stability of CsPbI2Br Inorganic Perovskite Solar Cells |
WU Qiaofeng1, ZHANG Fu1, YU Yue1, ZHANG Meng1, YU Hua1( ), FAN Shuanshi2( ) |
1.Institute of Photovoltaics, Southwest Petroleum University, Chengdu 610500, China 2.Key Laboratory of Heat Transfer Enhancement and Energy Conservation of Education Ministry, South China University of Technology, Guangzhou 510640, China |
引用本文:
吴巧凤, 张富, 于月, 张萌, 于华, 樊栓狮. CsPbI2Br无机钙钛矿太阳能电池稳定性的研究进展[J]. 材料研究学报, 2020, 34(11): 811-821.
Qiaofeng WU,
Fu ZHANG,
Yue YU,
Meng ZHANG,
Hua YU,
Shuanshi FAN.
Research Progress on Stability of CsPbI2Br Inorganic Perovskite Solar Cells[J]. Chinese Journal of Materials Research, 2020, 34(11): 811-821.
1 |
Chen Z, Dong Q, Liu Y, et al. Thin single crystal perovskite solar cells to harvest below-bandgap light absorption [J]. Nat. Commun., 2017, 8(1): 1890
|
2 |
Wei H, Fang Y, Mulligan P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals [J]. Nat. Photonics, 2016, 10(5): 333
|
3 |
Stranks S D, Eperon G E, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber [J]. Science, 2013, 342(6156): 341
|
4 |
Wang Z K, Li M, Yang Y G, et al. High efficiency Pb-In binary metal perovskite solar cells [J]. Adv. Mater., 2016, 28(31): 6695
|
5 |
Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovs-kites as visible-light sensitizers for photovoltaic cells [J]. J. Am. Chem. Soc., 2009, 131(17): 6050
|
6 |
Chen Y, Tan S, Li N, et al. Self-elimination of intrinsic defects improves the low-temperature performance of perovskite photovoltaics [J]. Joule, 2020. DOI:10.1016/j.joule.2020.07.006
|
7 |
Tai Q, Tang K C, Yan F. Recent progress of inorganic perovskite solar cells [J]. Energy Environ. Sci., 2019, 12(8): 2375
|
8 |
Liang J, Wang C, Wang Y, et al. All-inorganic perovskite solar cells [J]. J. Am. Chem. Soc., 2016, 138(49): 15829
|
9 |
Yang Z, Babu B H, Wu S, et al. Review on practical interface engineering of perovskite solar cells: From efficiency to stability [J]. Solar Rrl, DOI:10.1002/solr.201900257
|
10 |
Yang J, Siempelkamp B D, Liu D, et al. Investigation of CH3NH3-PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques [J]. ACS Nano, 2015, 9(2): 1955
|
11 |
Hoffman J B, Schleper A L, Kamat P V. Transformation of sintered CsPbBr3 nanocrystals to cubic CsPbI3 and gradient CsPbBrxI3-xthrough halide exchange [J]. J. Am. Chem. Soc., 2016, 138(27): 8603
|
12 |
Sun J K, Huang S, Liu X Z, et al. Polar solvent induced lattice distortion of cubic CsPbI3 nanocubes and hierarchical self-assembly into orthorhombic single-crystalline nanowires [J]. J. Am. Chem. Soc., 2018, 140(37): 11705
|
13 |
Li B, Zhang Y, Fu L, et al. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells [J]. Nat. Commun., 2018, 9: 1
|
14 |
Yuan H, Zhao Y, Duan J, et al. All-inorganic CsPbBr3 perovskite solar cell with 10.26% efficiency by spectra engineering [J]. J. Mater. Chem. A, 2018, 6(47): 24324
|
15 |
Kang J, Wang L W. High defect tolerance in lead halide perovskite CsPbBr3 [J]. J. Phys. Chem. Lett., 2017, 8(2): 489
|
16 |
Stoumpos C C, Malliakas C D, Peters J A, et al. Crystal growth of the perovskite semiconductor CsPbBr3: A new material for high-energy radiation detection [J]. Cryst. Growth Des., 2013, 13(7): 2722
|
17 |
Chang S, Bai Z, Zhong H. In situ fabricated perovskite nanocrystals: A revolution in optical materials [J]. Adv. Opt. Mater., 2018, 6(18): 1800380
|
18 |
Kulbak M, Cahen D, Hodes G. How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells [J]. J. Phys. Chem. Lett., 2015, 6(13): 2452
|
19 |
Sutton R J, Eperon G E, Miranda L, et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells [J]. Adv. Energy Mater., 2016, 6(8): 1502458
|
20 |
Bai D, Bian H, Jin Z, et al. Temperature-assisted crystallization for inorganic CsPbI2Br perovskite solar cells to attain high stabilized efficiency 14.81% [J]. Nano Energy, 2018, 52:408
|
21 |
Beal R E, Slotcavage D J, Leijtens T, et al. Cesium lead halide perovskites with improved stability for tandem solar cells [J]. J. Phys. Chem. Lett., 2016, 7(5): 746
|
22 |
Lin J, Lai M, Dou L, et al. Thermochromic halide perovskite solar cells [J]. Nat. Mater., 2018, 17(3): 261
|
23 |
Chen C Y, Lin H Y, Chiang K M, et al. All-vacuum-deposited stoichiometrically balanced inorganic cesium lead halide perovskite solar cells with stabilized efficiency exceeding 11% [J]. Adv. Mater., 2017, 29(12): 201605290
|
24 |
Yin G, Zhao H, Jiang H, et al. Precursor engineering for all-inorganic CsPbI2Br perovskite solar cells with 14.78% efficiency [J]. Adv. Funct. Mater., 2018, 28(39): 1803269
|
25 |
Han Y, Zhao H, Duan C, et al. Controlled n-doping in air-stable CsPbI2Br perovskite solar cells with a record efficiency of 16.79% [J]. Adv. Funct. Mater., 2020, 30(12): 1909972
|
26 |
Zheng Y, Yang X, Su R, et al. High-performance CsPbIxBr3-x all-inorganic perovskite solar cells with efficiency over 18% via spontaneous interfacial manipulation [J]. Adv. Funct. Mater., 2020, 2000457. DOI: 10.1002/adfm.202000457
|
27 |
Prakash J, Singh A, Sathiyan G, et al. Progress in tailoring perovs-kite based solar cells through compositional engineering: Materials properties, photovoltaic performance and critical issues [J]. Mater. Today Energy, 2018, 9:440
|
28 |
Ouedraogo N A, Chen Y, Xiao Y Y, et al. Stability of all-inorganic perovskite solar cells [J]. Nano Energy, 2020, 67:104249
|
29 |
Mariotti S, Hutter O S, Phillips L J, et al. Stability and performance of CsPbI2Br thin films and solar cell devices [J]. ACS Appl. Mater. Interfaces, 2018, 10(4): 3750
|
30 |
Edoardo M, Jon M A, Filippo D A. Ab initio molecular dynamics simulations of methylammonium lead iodide perovskite degradation by water [J]. Chem. Mater., 2015, 27(13): 4885
|
31 |
Yang J, Siempelkamp B D, Liu D, et al. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques [J]. ACS Nano, 2015, 9(2): 1955
|
32 |
Imler G H, Li X, Xu B, et al. Solid state transformation of the crystalline monohydrate (CH3NH3)PbI3(H2O) to the (CH3NH3)PbI3 per-ovskite [J]. Chem. Commun. (Camb), 2015, 51(56): 11290
|
33 |
Vincent B R, Robertson K N, Cameron T S, et al. Alkylammonium lead halides. Part 1. Isolated PbI64- ions in (CH3NH3)4PbI6·2H2O [J]. Canadian Journal of Chemistry, 1987, 65(5): 1042
|
34 |
Halder A, Choudhury D, Ghosh S, et al. Exploring thermochromic behavior of hydrated hybrid perovskites in solar cells [J]. J. Phys. Chem. Lett., 2015, 6(16): 3180
|
35 |
Eperon G E, Paterno G M, Sutton R J, et al. Inorganic caesium lead iodide perovskite solar cells [J]. J. Mater. Chem. A, 2015, 3(39): 19688
|
36 |
Xu L, Yuan S, Zeng H, et al. A comprehensive review of doping in perovskite nanocrystals/quantum dots: Evolution of structure, electronics, optics, and light-emitting diodes [J]. Mater. Today Nano, 2019, 6: 100036
|
37 |
Zhou Y, Zhao Y. Chemical stability and instability of inorganic halide perovskites [J]. Energy Environ. Sci., 2019, 12(5): 1495
|
38 |
Ju M G, Chen M, Zhou Y, et al. Toward eco-friendly and stable perovskite materials for photovoltaics [J]. Joule, 2018, 2(7): 1231
|
39 |
Berhe T A, Su W N, Chen C H, et al. Organometal halide perovs-kite solar cells: Degradation and stability [J]. Energy Environ. Sci., 2016, 9(2): 323
|
40 |
Zeng Q, Zhang X, Liu C, et al. Inorganic CsPbI2Br perovskite solar cells: The progress and perspective [J]. Solar Rrl, 2019, 3(1): 201800239
|
41 |
Wang R, Mujahid M, Duan Y, et al. A review of perovskites solar cell stability [J]. Adv. Funct. Mater., 2019, 29(47): 1808843
|
42 |
Xue J, Gu Y, Shan Q, et al. Constructing mie-scattering porous interface-fused perovskite films to synergistically boost light harvesting and carrier transport [J]. Angew. Chem., Int. Ed., 2017, 56(19): 5232
|
43 |
Roose B, Wang Q, Abate A. The role of charge selective contacts in perovskite solar cell stability [J]. Adv. Energy Mater., 2019, 9(5): 1803140
|
44 |
Chang C Y, Chu C Y, Huang Y C, et al. Tuning perovskite morphology by polymer additive for high efficiency solar cell [J]. ACS Appl. Mater. Interfaces, 2015, 7(8): 4955
|
45 |
Wakamiya A, Endo M, Sasamori T, et al. Reproducible fabrication of efficient perovskite-based solar cells: X-ray crystallographic studies on the formation of CH3NH3PbI3 layers [J]. Chem. Lett., 2014, 43(5): 711
|
46 |
Rong Y, Tang Z, Zhao Y, et al. Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells [J]. Nanoscale, 2015, 7(24): 10595
|
47 |
Chen J, Xiong Y, Rong Y, et al. Solvent effect on the hole-conductor-free fully printable perovskite solar cells [J]. Nano Energy, 2016, 27:130
|
48 |
Zai H, Zhang D, Li L, et al. Low-temperature-processed inorganic perovskite solar cells via solvent engineering with enhanced mass transport [J]. J. Mater. Chem. A, 2018, 6(46): 23602
|
49 |
Rong Y, Venkatesan S, Guo R, et al. Critical kinetic control of non-stoichiometric intermediate phase transformation for efficient pero-vskite solar cells [J]. Nanoscale, 2016, 8(26): 12892
|
50 |
Shi L, Hao H, Dong J, et al. Solvent engineering for intermediates phase, all-ambient-air-processed in organic-inorganic hybrid pero-vskite solar cells [J]. Nanomaterials, 2019, 9(7): 915
|
51 |
Jeon N J, Noh J H, Kim Y C, et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells [J]. Nat. Mater., 2014, 13(9): 897
|
52 |
Yin M, Xie F, Chen H, et al. Annealing-free perovskite films by instant crystallization for efficient solar cells [J]. J. Mater. Chem. A, 2016, 4(22): 8548
|
53 |
Yu Y, Yang S, Lei L, et al. Ultrasmooth perovskite film via mixed anti-solvent strategy with improved efficiency [J]. ACS Appl. Mater. Interfaces, 2017, 9(4): 3667
|
54 |
Rao H, Ye S, Gu F, et al. Morphology controlling of all-inorganic perovskite at low temperature for efficient rigid and flexible solar cells [J]. Adv. Energy Mater., 2018, 8(23): 1800758
|
55 |
Kim M, Kim G H, Oh K S, et al. High-temperature-short-time annealing process for high-performance large-area perovskite solar cells [J]. ACS Nano, 2017, 11(6): 6057
|
56 |
Huang L, Hu Z, Xu J, et al. Multi-step slow annealing perovskite films for high performance planar perovskite solar cells [J]. Sol. Energy Mater. Sol. Cells, 2015, 141:377
|
57 |
Nam J K, Jung M S, Chai S U, et al. Unveiling the crystal formation of cesium lead mixed-halide perovskites for efficient and stable solar cells [J]. J. Phys. Chem. Lett., 2017, 8(13): 2936
|
58 |
Chen W, Chen H, Xu G, et al. Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells [J]. Joule, 2019, 3(1): 191
|
59 |
Chen C Y, Lin H Y, Chiang K M, et al. All-vacuum-deposited stoichiometrically balanced inorganic cesium lead halide perovskite solar cells with stabilized efficiency exceeding 11% [J]. Adv. Mater., 2017, 29(12): 2936
|
60 |
Kong R, Kim J E, Yeo J S, et al. Optimized organometal halide perovskite planar hybrid solar cells via control of solvent evaporation rate [J]. J. Phys. Chem. C, 2014, 118(46): 26513
|
61 |
Hsu H L, Chen C P, Chang J Y, et al. Two-step thermal annealing improves the morphology of spin-coated films for highly efficient perovskite hybrid photovoltaics [J]. Nanoscale, 2014, 6(17): 10281
|
62 |
Li M H, Liu S C, Qiu F Z, et al. High-efficiency CsPbI2Br perovs-kite solar cells with dopant-free poly(3-hexylthiophene) hole transporting layers [J]. Adv. Energy Mater., 2020, 10(21): 2000501
|
63 |
Sanchez S, Hua X, Phung N, et al. Flash infrared annealing for antisolvent-free highly efficient perovskite solar cells [J]. Adv. Energy Mater., 2018, 8(12): 1702915
|
64 |
Chen Q, Ma T, Wang F, et al. Rapid microwave-annealing process of hybrid perovskites to eliminate miscellaneous phase for high performance photovoltaics [J]. Adv. Sci., DOI:10.1002/advs.202000480
|
65 |
Wang P, Wu Y, Cai B, et al. Solution-processable perovskite solar cells toward commercialization: Progress and challenges [J]. Adv. Funct. Mater., 2019, 29(47): 1807661
|
66 |
Cheng Z, Lin J. Layered organic-inorganic hybrid perovskites: Structure, optical properties, film preparation, patterning and templating engineering [J]. Crystengcomm, 2010, 12(10): 2646
|
67 |
Li C, Soh K C K, Wu P. Formability of ABO3 perovskites [J]. Journal of Alloys and Compounds, 2004, 372(1): 40
|
68 |
Li C, Lu X, Ding W, et al. Formability of ABX3 (X=F, Cl, Br, I) halide perovskites [J]. Acta Crystallogr. B, 2008, 64(Pt6): 702
|
69 |
Green M A, Ho Baillie A, Snaith H J. The emergence of perovskite solar cells [J]. Nat. Photonics, 2014, 8(7): 506
|
70 |
Zhang W, Eperon G E, Snaith H J. Metal halide perovskites for energy applications [J]. Nature Energy, 2016, 1(6): 16048
|
71 |
Zhou Y, Chen J, Bakr O M, et al. Metal-doped lead halide per-ovskites: Synthesis, properties, and optoelectronic applications [J]. Chem. Mater., 2018, 30(19): 6589
|
72 |
Nam J K, Chai S U, Cha W, et al. Potassium incorporation for enhanced performance and stability of fully inorganic cesium lead halide perovskite solar cells [J]. Nano Letters, 2017, 17(3): 2028
|
73 |
Kang D H, Park N G. On the current-voltage hysteresis in per-ovskite solar cells: Dependence on perovskite composition and methods to remove hysteresis [J]. Adv. Mater., 2019, 31(34): 1805214
|
74 |
Song D H, Jang M H, Lee M H, et al. A discussion on the origin and solutions of hysteresis in perovskite hybrid solar cells [J]. J. Phys. D: Appl. Phys., 2016, 49(47): 473001
|
75 |
Patil J V, Mali S S, Hong C K. A-site rubidium cation-incorporated CsPbI2Br all-inorganic perovskite solar cells exceeding 17% efficiency [J]. Solar RRL, 2020, DOI:10.1002/solr.202000164
|
76 |
Yang F, Hirotani D, Kapil G, et al. All-inorganic CsPb1-xGexI2Br perovskite with enhanced phase stability and photovoltaic performance [J]. Angew. Chem., Int. Ed., 2018, 57(39): 12745
|
77 |
Guo Z, Zhao S, Liu A, et al. Niobium incorporation into CsPbI2Br for stable and efficient all-inorganic perovskite solar cells [J]. ACS Appl. Mater. Interfaces, 2019, 11(22): 19994
|
78 |
Xiang W, Wang Z, Kubicki D J, et al. Europium-doped CsPbI2Br for stable and highly efficient inorganic perovskite solar cells [J]. Joule, 2019, 3(1): 205
|
79 |
Liu C, Li W, Li H, et al. Structurally reconstructed CsPbI2Br perovskite for highly stable and square-centimeter all-inorganic perovskite solar cells [J]. Adv. Energy Mater., 2019, 9(7): 205
|
80 |
Bai D, Zhang J, Jin Z, et al. Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency CsPbI2Br solar cells [J]. ACS Energy Lett., 2018, 3(4): 970
|
81 |
Wang K L, Wang R, Wang Z K, et al. Tailored phase transformation of CsPbI2Br films by copper(II) bromide for high-performance all-inorganic perovskite solar cells [J]. Nano Lett., 2019, 19(8): 5176
|
82 |
Sun H, Zhang J, Gan X, et al. Pb-reduced CsPb0.9Zn0.1I2Br thin films for efficient perovskite solar cells [J]. Adv. Energy Mater., 2019, 9(25): 1900896
|
83 |
Wang T, Abbasi S, Wang X, et al. Hierarchy of interfacial passivation in inverted perovskite solar cells [J]. Chem. Commun., 2019, 55(99): 14996
|
84 |
Yang S, Chen S, Mosconi E, et al. Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts [J]. Science, 2019, 365(6452): 473
|
85 |
Liu R, Zheng Z, Spurgeon J, et al. Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers [J]. Energy Environ. Sci., 2014, 7(8): 2504
|
86 |
Mahmud M A, The D, Yin Y, et al. Double-sided surface passivation of 3D perovskite film for high-efficiency mixed-dimensional perovskite solar cells [J]. Adv. Funct. Mater., 2019, 30(7): 1907962
|
87 |
Wang T, Cheng Z, Zhou Y, et al. Highly efficient and stable perovskite solar cells via bilateral passivation layers [J]. J.Mater. Chem. A, 2019, 7(38): 21730
|
88 |
Jiang Q, Zhao Y, Zhang X, et al. Surface passivation of perovskite film for efficient solar cells [J]. Nat. Photonics, 2019, 13(7): 460
|
89 |
Zhou L, Guo X, Lin Z, et al. Interface engineering of low temperature processed all-inorganic CsPbI2Br perovskite solar cells toward pce exceeding 14% [J]. Nano Energy, 2019, 60: 583
|
90 |
Fu L, Nie Y, Li B, et al. Bismuth telluride interlayer for all-inorganic perovskite solar cells with enhanced efficiency and stability [J]. Solar Rrl, 2019, 3(12): 1900233
|
91 |
Zhao H, Yang S, Han Y, et al. A high mobility conjugated polymer enables air and thermally stable CsPbI2Br perovskite solar cells with an efficiency exceeding 15% [J]. Adv. Mater. Technol., 2019, 4(9): 1900311
|
92 |
Chen S, Zhang S, Zheng Q. A facile surface passivation method for efficient inorganic CsPbI2Br perovskite solar cells with efficiencies over 15% [J]. Sci. China Mater., 2020, 63(5): 719
|
93 |
Liu X M, Li Y H, Wang X T, et al. Organic ammonium salt surface treatment stabilizing all-inorganic CsPbI2Br perovskite [J]. Acta Physica Sinica, 2019, 68(15): 158805
|
93 |
刘晓敏, 李亦回, 王兴涛等. 有机铵盐表面稳定化CsPbI2Br全无机钙钛矿 [J]. 物理学报, 2019, 68(15): 158805
|
94 |
Liu Y H, Akin S, Pan L F, et al. Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22% [J]. Sci. Adv., 2019, 5(6): eaaw2543
|
95 |
Li J, Yu Q, He Y, et al. Cs2PbI2Cl2, All-inorganic two-dimensional ruddlesden-popper mixed halide perovskite with optoelectronic response [J]. J. Am. Chem. Soc., 2018, 140(35): 11085
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|