Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (3): 161-174    DOI: 10.11901/1005.3093.2020.303
  综述 本期目录 | 过刊浏览 |
单晶高温合金表面缺陷焊接修复的研究进展
郎振乾, 叶政, 杨健, 黄继华()
北京科技大学材料科学与工程学院 北京 100083
Research Progress of Repair Technology for Surface Defects of Single Crystal Superalloy
LANG Zhenqian, YE Zheng, YANG Jian, HUANG Jihua()
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

郎振乾, 叶政, 杨健, 黄继华. 单晶高温合金表面缺陷焊接修复的研究进展[J]. 材料研究学报, 2021, 35(3): 161-174.
Zhenqian LANG, Zheng YE, Jian YANG, Jihua HUANG. Research Progress of Repair Technology for Surface Defects of Single Crystal Superalloy[J]. Chinese Journal of Materials Research, 2021, 35(3): 161-174.

全文: PDF(27589 KB)   HTML
摘要: 

单晶高温合金的性能优异,但是制造成本昂贵,因此其表面缺陷的焊接修复一直是单晶高温合金领域的重要研究课题。本文全面阐述了各类焊接修复(包括熔焊、钎焊和瞬时液相扩散焊)方法对修复区的组织和修复后力学性能的影响,分析了各类焊接修复方法的局限性和存在的问题,并指出了单晶高温合金表面缺陷焊接修复的发展方向。

关键词 评述金属材料单晶高温合金修复表面缺陷焊接    
Abstract

Single crystal superalloy has excellent properties at elevated temperature, but it is burdened with high manufacturing costs. The repair of single crystal superalloy by welding and joining has been an important research subject in the field of single crystal superalloy. In this paper, a comprehensive overview on the development of surface defects repair technology in the field of single crystal superalloy was presented, and the effect of repair technologies (including fusion welding, brazing and transient liquid phase bonding) on the microstructure and mechanical properties of the repaired zone was summarized. The problems and limitations of the present repair technologies were analyzed. Finally, the future development direction of repair technology was also proposed.

Key wordsreview    metallic materials    single crystal superalloy    repair technology    surface defects    welding and brazing
收稿日期: 2020-07-21     
ZTFLH:  TG47  
基金资助:装备预研领域基金(61409230313)
作者简介: 郎振乾,男,1992年生,博士生
图1  CMSX-4单晶高温合金中裂纹扩展形貌[9]
图2  典型蚀坑形貌及延伸裂纹[15]
图3  不同冷却速度条件下TMS-75单晶高温合金TIG焊修复后形貌[20]
图4  PWA1480单晶高温合金电子束焊修复组织[27]
图5  (a)激光熔凝工艺示意图和(b)激光熔凝熔池剖面[30]
图6  单层激光熔覆工艺示意图[36]
GradeCrCoWMoAlTiTaReNiReference
SubstrateDD325.09.08.61.16.0-4.04.0Bal.[40]
PowderDD325.09.08.61.16.0-4.04.0Bal.
SubstrateCMSX-46.59.06.00.65.61.06.53.0Bal.[41~43]
PowderCMSX-46.59.06.00.65.61.06.53.0Bal.
SubstrateCSU-B16.010.06.51.66.60.46.0-Bal.[39]
PowderCSU-B16.010.06.51.66.60.46.0-Bal.
SubstrateDD57.07.55.01.56.2-6.53.0Bal.[36, 37, 44]
PowderGH73819.513.5-4.21.43.0--Bal.
SubstrateDD64.39.08.02.05.6--2.0Bal.[36, 44]
PowderGH73819.513.5-4.21.43.0--Bal.
表1  几种单晶高温合金基体与熔覆材料的主要化学成分(质量分数, %)
图7  激光熔覆单层(a)EBSD图像, (b)宏观截面, (c)微观组织; 三层(d)EBSD图像, (e)宏观截面, (f)微观组织[39]
图8  单晶基体绕[100]、[010]和[001]轴旋转示意图[29]
图9  单晶激光熔凝区横截面[29]
图10  单晶修复区熔池几何模型[35]
图11  参数为[100]-240W-1 mm/s条件下实际与模拟的激光熔凝组织对照[48]
图12  基体表面旋转不同角度时,激光熔凝组织中杂晶含量的模拟分布情况[28]
图13  修复区组织结构与激光功率P、扫描速率Vb和预热温度T0的函数关系[49]
图14  不同温度梯度与凝固速率下的凝固组织[51]
图15  激光熔覆过程中凝固裂纹形成机理示意图[39]
图16  不同钎料钎焊修复Rene N5单晶后微观组织[57]
图17  典型TLP过程示意图[60]
图18  随保温时间延长,固液界面示意图[63]
图19  不同保温时间下,修复区(原始尺寸为300 μm)的微观组织[63]
1 Xia W S, Zhao X B, Yue L, et al. Microstructural evolution and creep mechanisms in Ni-based single crystal superalloys: A review [J]. J. Alloy. Compd., 2020, 819: 152954
2 Zhang J, Wang L, Wang D, et al. Recent progress in research and development of nickel-based single crystal superalloys [J]. Acta Metall. Sin., 2019, 55(9): 1077
2 张健, 王莉, 王栋等. 镍基单晶高温合金的研发进展 [J]. 金属学报, 2019, 55(9): 1077
3 Gallardo J M, Rodríguez J A, Herrera E J. Failure of gas turbine blades [J]. Wear, 2002, 252(3-4): 264
4 Viswanathan I, Gandy D, Findlan S. Power industry experiences surge in welding research [J]. Weld. J., 2003, 82(9): 40
5 Jiang K H, Chen J W, Jing F L, et al. Thermomechanical fatigue on the nickel based single crystal superalloy DD6 with film cooling hole [J]. Journal of Aerospace Power, 2019, 34(5): 980
5 蒋康河, 陈竞炜, 荆甫雷等. 镍基单晶高温合金DD6气膜孔热机械疲劳试验 [J]. 航空动力学报, 2019, 34(5): 980
6 Cervellon A, Hémery S, Kürnsteiner P, et al. Crack initiation mechanisms during very high cycle fatigue of Ni-based single crystal superalloys at high temperature [J]. Acta Mater., 2020, 188: 131
7 Liu Y, Yu J J, Xu Y, et al. Thermal fatigue behavior of single-crystal superalloy [J]. Rare Metal Mat. Eng., 2009, 38(1): 59
7 刘源, 于金江, 徐岩等. 单晶高温合金的冷热疲劳裂纹生长行为研究 [J]. 稀有金属材料与工程, 2009, 38(1): 59
8 Zhang J, Zhao Y S, Jia Y L, et al. Thermo-mechanical fatigue behaviors of a nickel-base single crystal superalloy [J]. Materials for Mechanical Engineering, 2013, 37(8): 41
8 张剑, 赵云松, 贾玉亮等. 一种镍基单晶高温合金的热机械疲劳行为 [J]. 机械工程材料, 2013, 37(8): 41
9 Hong H U, Kang J G, Choi B G, et al. A comparative study on thermomechanical and low cycle fatigue failures of a single crystal nickel-based superalloy [J]. Int. J. Fatigue, 2011, 33(12): 1592
10 Zhang Y L, Wang X G, Li J G, et al. The low-cycle fatigue deformation mechanisms of two single crystal superalloys at room temperature and 600℃ [J]. Scr. Mater., 2019, 171: 122
11 Pei H Q, Wen Z X, Wang Z H, et al. Transient thermal fatigue crack propagation behavior of a nickel-based single-crystal superalloy [J]. Int. J. Fatigue, 2020, 131: 105303
12 Chen X S, Sakaguchi M. Transition behavior from Mode I cracking to crystallographic cracking in a Ni-base single crystal superalloy [J]. Int. J. Fatigue, 2020, 132: 105400
13 Montero X, Ishida A, Meissner T M, et al. Effect of surface treatment and crystal orientation on hot corrosion of a Ni-based single-crystal superalloy [J]. Corrosion Sci., 2020, 166: 108472
14 Shi Z X, Liu S Z, Wang X G, et al. Corrosion behavior of the second generation single crystal superalloy DD6 in hot gas [J] J. Iron Steel Res., 2015, 27(5): 61
14 史振学, 刘世忠, 王效光等. 第2代单晶高温合金DD6的燃气热腐蚀行为 [J]. 钢铁研究学报, 2015, 27(5): 61
15 Eliaz N, Shemesh G, Latanision R M. Hot corrosion in gas turbine components [J]. Eng. Fail. Anal., 2002, 9(1): 31
16 Ma C Y, Tian Z L, Du Z Y, et al. Effect of heat input on structure and mechanical properties of welded joint in a 800 MPa grade RPC steel [J]. Transactions of The China Welding Institution, 2004, 25(2): 23
16 马成勇, 田志凌, 杜则裕等. 热输入对800 MPa级钢接头组织及性能的影响 [J]. 焊接学报, 2004, 25(2): 23
17 Fujita Y, Saida K, Nishimoto K. Study of microstructure in surface-melted region of Ni-base single crystal superalloy CMSX-4 [J]. Materials Science Forum, 2006, 512: 313
18 Anderson T D, Dupont J N, Debroy T, et al. Stray grain formation in welds of single-crystal Ni-base superalloy CMSX-4 [J]. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 2010, 41A(1): 181
19 Anderson T D, Dupont J N. Stray grain formation and solidification cracking susceptibility of single crystal Ni-base superalloy CMSX-4 [J]. Weld. J., 2011, 90(2): 27s
20 Babu S S, David S A, Park J W, et al. Joining of nickel base superalloy single crystals [J]. Sci. Technol. Weld. Join., 2013, 9(1): 1
21 Liburdi J, Lowden P, Pilcher C. Automated welding of turbine blades [A]. ASME 1989 International Gas Turbine and Aeroengine Congress and Exposition [C]. Toronto, 1989
22 Churchman C, Bonifaz E A, Richards N L. Comparison of single crystal Ni based superalloy repair by gas tungsten arc and electron beam processes [J]. Mater. Sci. Technol., 2011, 27(4): 811
23 Sidhu R K, Ojo O A, Richards N L, et al. Metallographic and OIM study of weld cracking in GTA weld build-up of polycrystalline, directionally solidified and single crystal Ni based superalloys [J]. Sci. Technol. Weld. Join., 2009, 14(2): 125
24 Chauvet E, Tassin C, Blandin J, et al. Producing Ni-base superalloys single crystal by selective electron beam melting [J]. Scr. Mater., 2018, 152: 15
25 Guercio D G, Galati M, Saboori A, et al. Microstructure and mechanical performance of Ti-6Al-4V lattice structures manufactured via electron beam melting (EBM): a review [J]. Acta Metall. Sin.Engl. Lett., 2020, 33(2): 183
26 Huang Y D, Zeng Z Q, Cai Z P, et al. Influence of electron beam thermal effect on cracks formation in fused region of single crystal superalloys DD407 [J]. Rare Metal Mat. Eng., 2017, 46(7): 1920
26 黄永德, 曾志强, 蔡祖鹏等. 电子束热作用对DD407单晶熔凝区裂纹形成的影响 [J]. 稀有金属材料与工程, 2017, 46(7): 1920
27 David S A, Vitek J M, Babu S S, et al. Welding of nickel base superalloy single crystals [J]. Sci. Technol. Weld. Join., 1997, 2(2): 79
28 Wang L, Wang N, Yao W J, et al. Effect of substrate orientation on the columnar-to-equiaxed transition in laser surface remelted single crystal superalloys [J]. Acta Mater., 2015, 88: 283
29 Wang L, Wang N. Effect of substrate orientation on the formation of equiaxed stray grains in laser surface remelted single crystal superalloys: experimental investigation [J]. Acta Mater., 2016, 104: 250
30 Mokadem S, Bezençon C, Hauert A, et al. Laser repair of superalloy single crystals with varying substrate orientations [J]. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 2007, 38(7): 1500
31 Liu W P, Dupont J N. Effects of melt-pool geometry on crystal growth and microstructure development in laser surface-melted superalloy single crystals: mathematical modeling of single-crystal growth in a melt pool (part I) [J]. Acta Mater., 2004, 52(16): 4833
32 Park J W, Vitek J M, Babu S S, et al. Stray grain formation, thermomechanical stress and solidification cracking in single crystal nickel base superalloy welds [J]. Sci. Technol. Weld. Join., 2004, 9(6): 472
33 Vitek J M, David S A, Boatner L A. Microstructural development in single crystal nickel base superalloy welds [J]. Sci. Technol. Weld. Join., 1997, 2(3): 109
34 Park J W, Babu S S, Vitek J M, et al. Stray grain formation in single crystal Ni-base superalloy welds [J]. J. Appl. Phys., 2003, 94(6): 4203
35 Vitek J M. The effect of welding conditions on stray grain formation in single crystal welds-theoretical analysis [J]. Acta Mater., 2005, 53(1): 53
36 Chen H, Lu Y Y, Luo D, et al. Epitaxial laser deposition of single crystal Ni-based superalloys: repair of complex geometry [J]. J. Mater. Process. Technol., 2020, 285: 116782
37 Chen H, Huang G S, Lu Y Y, et al. Epitaxial laser deposition of single crystal Ni-based superalloy: variation of stray grains [J]. Mater. Charact., 2019, 158: 109982
38 Zhang Q M, Wang Z D, Liu X M, et al. Influence of processing parameters on geometrical features of powder feeding laser cladding [J]. Transactions of The China Welding Institution, 2000, 21(2): 43
38 张庆茂, 王忠东, 刘喜明等. 工艺参数对送粉激光熔覆层几何形貌的影响 [J]. 焊接学报. 2000, 21(2): 43
39 Zhou Z P, Huang L, Shang Y J, et al. Causes analysis on cracks in nickel-based single crystal superalloy fabricated by laser powder deposition additive manufacturing [J]. Mater. Des., 2018, 160: 1238
40 Ci S W, Liang J J, Li J G, et al. Microstructure and tensile properties of DD32 single crystal Ni-base superalloy repaired by laser metal forming [J]. J. Mater. Sci. Technol., 2020, 45: 23
41 Felberbaum L, Voisey K, Gäumann M, et al. Thermal fatigue of single-crystalline superalloy CMSX-4®: a comparison of epitaxial laser-deposited material with the base single crystal [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2001, 299(1-2): 152
42 Kaierle S, Overmeyer L, Alfred I, et al. Single-crystal turbine blade tip repair by laser cladding and remelting [J]. CIRP Journal of Manufacturing Science and Technology, 2017, 19: 196
43 Gäumann M, Henry S, Cléton F, et al. Epitaxial laser metal forming: analysis of microstructure formation [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 1999, 271(1-2): 232
44 Luo D, Lu Y Y, Guo X X, et al. Laser repairing process of V-groove in single-crystal superalloy [J]. Chin. J. Las., 2016, 43(5): 37
44 罗登, 路媛媛, 郭溪溪等. 单晶高温合金V槽的激光修复工艺研究 [J]. 中国激光, 2016, 43(5): 37
45 Vilar R, Almeida A. Repair and manufacturing of single crystal Ni-based superalloys components by laser powder deposition—A review [J]. J. Laser Appl., 2015, 27(spec. issue): S17004.
46 Wang N, Mokadem S, Rappaz M, et al. Solidification cracking of superalloy single- and bi-crystals [J]. Acta Mater., 2004, 52(11): 3173
47 Liu W, Dupont J N. Effects of substrate crystallographic orientations on crystal growth and microstructure development in laser surface-melted superalloy single crystals: mathematical modeling of single-crystal growth in a melt pool (Part II) [J]. Acta Mater., 2005, 53(5): 1545
48 Anderson T D, Dupont J N, Debroy T. Origin of stray grain formation in single-crystal superalloy weld pools from heat transfer and fluid flow modeling [J]. Acta Mater., 2010, 58(4): 1441
49 Gäumann M, Bezençon C, Canalis P, et al. Single-crystal laser deposition of superalloys: processing-microstructure maps [J]. Acta Mater., 2001, 49(6): 1051
50 Kurz W, Bezençon C, Gäumann M. Columnar to equiaxed transition in solidification processing [J]. Sci. Technol. Adv. Mater., 2001, 2(1): 185
51 Boris R; Christian N; Stefan K, et al. Crack repair of single crystal turbine blades using laser cladding technology [A]. Proceedings of the 3rd International Conference In Through-Life Engineering Services [C]. Cranfield, 2014
52 Liu D, Song Y Y, Shi B, et al. Vacuum brazing of GH99 superalloy using graphene reinforced BNi-2 composite filler [J]. J. Mater. Sci. Technol., 2018, 34(10): 1843
53 Dong K W, Kong J, Yang Y, et al. Vacuum brazing of TiAl-based alloy and GH536 superalloy with a low-melting point amorphous Ti35Zr25Be30Co10 filler [J]. J. Manuf. Process., 2019, 47: 410
54 Sun Y, Liu J D, Li B, et al. Microstructure evolution of single crystal superalloy DD5 joints brazed using AWS BNi-2 filler alloy [J]. Mater. Res. Innov., 2014, 18(): 341
55 Sun Y, Liu J D, Liu Z M, et al. Microstructure evolution and mechanical properties of DD5 single crystal superalloy joint brazed by Co-based filler alloy [J]. Acta Metall. Sin., 2013, 49(12): 1581
55 孙元, 刘纪德, 刘忠明等. 钴基钎料钎焊DD5单晶高温合金的接头微观组织演变与力学性能研究 [J]. 金属学报, 2013, 49(12): 1581
56 Chai L, Hou J B. Effect of Si content in filler metal on microstructure and creep rupture properties of N5 crystal brazed joints [J]. Heat Treatment of Metals, 2017, 42(3): 143
56 柴禄, 侯金保. 钎料Si含量对N5单晶钎焊接头组织和持久性能的影响 [J]. 金属热处理, 2017, 42(3): 143
57 Laux B, Piegert S, Rösler J. et al. Braze alloy development for fast epitaxial high-temperature brazing of single-crystalline nickel-based superalloys [J]. Metall. Mater. Trans. A, 2009, 40A(1): 138
58 Laux B, Piegert S, Rösler J. Fast epitaxial high temperature brazing of single crystalline nickel based superalloys [J]. J. Eng. Gas Turbines Power, 2009, 131(3): 032102
59 Laux B, Piegert S, Rösler J. Advanced braze alloys for fast epitaxial high-temperature brazing of single-crystalline nickel-base superalloys [J]. J. Eng. Gas Turbines. Power, 2008, 132(3): 32101.
60 Gale W F, Butts D A. Transient liquid phase bonding [J]. Sci. Technol. Weld. Join., 2004, 9(4): 283
61 Chai L, Huang J H, Hou J B, et al. Effect of holding time on microstructure and properties of transient liquid-phase-bonded joints of a single crystal alloy [J]. J. Mater. Eng. Perform., 2015, 24(6): 2287
62 Sheng N C, Hu X B, Liu J D, et al. M3B2 and M5B3 formation in diffusion-affected zone during transient liquid phase bonding single-crystal superalloys [J]. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 2015, 46(4): 1670
63 Sheng N C, Liu J D, Jin T, et al. Wide gap TLP bonding a single-crystal superalloy: evolution of the L/S interface morphology and formation of the isolated grain boundaries [J]. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 2013, 44(4): 1793
64 Hu X B, Sheng N C, Zhu Y M, et al. Atomic-scale investigation of the borides precipitated in a transient liquid phase-bonded Ni-based superalloy [J]. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 2020, 51(4): 1689
65 Sheng N, Liu J D, Jin T, et al. Precipitation behaviors in the diffusion affected zone of TLP bonded single crystal superalloy joint [J]. J. Mater. Sci. Technol., 2015, 31(2): 129
66 Heinz P, Volek A, Singer R F, et al. Diffusion brazing of single crystalline nickel base superalloys using boron free nickel base braze alloys [A]. Diffusion in Solids and Liquids III [C]. ‏Algarve, 2008
67 Neumeier S, Dinkel M, Pyczak F, et al. Nanoindentation and XRD investigations of single crystalline Ni-Ge brazed nickel-base superalloys PWA 1483 and René N5 [J]. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2011, 528(3): 815
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.