|
|
基于激光选区熔化成形Ni-Cu合金模板的Ni-Cu-石墨烯复合材料的制备 |
刘主峰1, 黄耀东1, 杨潇1, 贺媛婧2, 李昭青1( ), 闫春泽1,3 |
1.华中科技大学 材料成形与模具技术国家重点实验室 武汉 430074 2.国家开放大学信息化部(工程中心) 北京 100039 3.深圳华中科技大学研究院 深圳 518057 |
|
Preparation of Graphene/Ni-Cu Alloy Composite on Ni-Cu Alloy Template Made by Selective Laser Melting |
LIU Zhufeng1, HUANG Yaodong1, YANG Xiao1, HE Yuanjing2, LI Zhaoqing1( ), YAN Chunze1,3 |
1.State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 2.The Open University of China Ministry of Information Technology (Engineering Center), Beijing 100039, China 3.Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China |
引用本文:
刘主峰, 黄耀东, 杨潇, 贺媛婧, 李昭青, 闫春泽. 基于激光选区熔化成形Ni-Cu合金模板的Ni-Cu-石墨烯复合材料的制备[J]. 材料研究学报, 2021, 35(1): 1-6.
Zhufeng LIU,
Yaodong HUANG,
Xiao YANG,
Yuanjing HE,
Zhaoqing LI,
Chunze YAN.
Preparation of Graphene/Ni-Cu Alloy Composite on Ni-Cu Alloy Template Made by Selective Laser Melting[J]. Chinese Journal of Materials Research, 2021, 35(1): 1-6.
1 |
Kruth J. P., Froyen L., Vaerenbergh J. V., et al. Selective laser melting of iron-based powder [J]. Mater. Process. Technol., 2004,149: 616
|
2 |
Losurdo M., Giangregorio M. M., Capezzuto P., et al. Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure [J]. PCCP, 2011, 13: 20836
|
3 |
Muñoz R., Gómez-Aleixandre C., Review of CVD synthesis of graphene [J]. Chem. Vap. Deposition, 2013, 19: 297
|
4 |
Stefan T., Alfonso R., Paul H., et al. Engineering polycrystalline Ni films to improve thickness uniformity of the chemical-vapor-deposition-grown graphene films [J]. Nanotechnology, 2010, 21: 015601
|
5 |
Robinson Z. R., Tyagi P., Murray T. M., et al. Substrate grain size and orientation of Cu and Cu-Ni foils used for the growth of graphene films [J]. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films, 2011, 30: 011401-011401-011407
|
6 |
Hsieh Y. P., Wang Y. W., Ting C. C., et al. Effect of catalyst morphology on the quality of CVD grown graphene [J]. Journal of Nanomaterials, 2013 (2013) 6
|
7 |
Hodge N.E., Ferencz R.M., Solberg J.M., Implementation of a thermomechanical model for the simulation of selective laser melting [J]. Comput. Mech., 2014, 54: 33
|
8 |
Yan C., Hao L., Hussein A., et al. Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting [J]. Mater. Design, 2014, 55: 533
|
9 |
Wang X., Dong L., Zhang B., et al. Controlled growth of Cu–Ni nanowires and nanospheres for enhanced microwave absorption properties [J]. Nanotechnology, 2016, 27: 125602
|
10 |
Bai Z., Chen X., Yang K., et al. Hydrogenation of dicyclopentadiene resin and its monomer over high efficient CuNi alloy catalysts [J]. ChemistrySelect, 2019, 4: 6035
|
11 |
Yan C., Liang H., Hussein A., et al. Microstructure and mechanical properties of aluminium alloy cellular lattice structures manufactured by direct metal laser sintering [J]. Materials Science & Engineering A, 2015, 628: 238
|
12 |
Yan C., Liang H., Raymont D.. Evaluations of cellular lattice structures manufactured using selective laser melting [J]. International Journal of Machine Tools & Manufacture, 2012, 62: 32
|
13 |
Habib M. R., Liang T., Yu X., et al. A review of theoretical study of graphene chemical vapor deposition synthesis on metals: nucleation, growth, and the role of hydrogen and oxygen [J]. Rep. Prog. Phys., 2018, 81: 036501
|
14 |
Cunha T. H. R., Ek-Weis J., Lacerda R. G., et al. Graphene chemical vapor deposition at very low pressure: The impact of substrate surface self-diffusion in domain shape [J]. Appl. Phys. Lett., 2014, 105: 1312
|
15 |
A. K. Geim, Graphene: status and prospects [J]. Science, 2009, 324: 1530
|
16 |
Park B. J., Choi J. S., Eom J. H., et al. Defect-free graphene synthesized directly at 150℃ via chemical vapor deposition with no transfer [J]. ACS Nano, 2018, 12: 2008
|
17 |
Nan L., Lei F., Boya D., et al. Universal segregation growth approach to wafer-size graphene from non-noble metals [J]. Nano Lett., 2011, 11: 297
|
18 |
Shu H., Tao X. M., Ding F.. What are the active carbon species during graphene chemical vapor deposition growth? [J]. Nanoscale, 2015, 7: 1627
|
19 |
Ferrari A. C., Meyer J. C., Scardaci V., et al. Raman spectrum of graphene and graphene layers [J]. Phys. Rev. Lett., 2006, 97: 187401
|
20 |
Fang W., Hsu A. L., Song Y., et al. A review of large-area bilayer graphene synthesis by chemical vapor deposition [J]. Nanoscale, 2015, 7: 20335
|
21 |
Balandin A. A., Ghosh S., Bao W., et al. Superior thermal conductivity of single-layer graphene [J]. Nano Lett., 2008, 8: 902
|
22 |
Cabrera H., Mendoza D., Benítez J. L., et al. Thermal diffusivity of few-layers graphene measured by an all-optical method [J]. Journal of Physics D Applied Physics, 2015, 48: 465501
|
23 |
Karcher H.. The triply periodic minimal surfaces of Alan Schoen and their constant mean curvature companions [J]. Manuscripta Mathematica, 1989, 64(3): 291
|
24 |
Yang Z., Yan C., Liu J., et al. Designing 3D graphene networks via a 3D-printed Ni template [J]. RSC Adv., 2015, 5(37): 29397
|
25 |
Balandin A. A.. Thermal properties of graphene and nanostructured carbon materials [J]. Nat. Mater., 2011, 10(8): 569
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|