Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (1): 1-6    DOI: 10.11901/1005.3093.2020.185
  研究论文 本期目录 | 过刊浏览 |
基于激光选区熔化成形Ni-Cu合金模板的Ni-Cu-石墨烯复合材料的制备
刘主峰1, 黄耀东1, 杨潇1, 贺媛婧2, 李昭青1(), 闫春泽1,3
1.华中科技大学 材料成形与模具技术国家重点实验室 武汉 430074
2.国家开放大学信息化部(工程中心) 北京 100039
3.深圳华中科技大学研究院 深圳 518057
Preparation of Graphene/Ni-Cu Alloy Composite on Ni-Cu Alloy Template Made by Selective Laser Melting
LIU Zhufeng1, HUANG Yaodong1, YANG Xiao1, HE Yuanjing2, LI Zhaoqing1(), YAN Chunze1,3
1.State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2.The Open University of China Ministry of Information Technology (Engineering Center), Beijing 100039, China
3.Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China
引用本文:

刘主峰, 黄耀东, 杨潇, 贺媛婧, 李昭青, 闫春泽. 基于激光选区熔化成形Ni-Cu合金模板的Ni-Cu-石墨烯复合材料的制备[J]. 材料研究学报, 2021, 35(1): 1-6.
Zhufeng LIU, Yaodong HUANG, Xiao YANG, Yuanjing HE, Zhaoqing LI, Chunze YAN. Preparation of Graphene/Ni-Cu Alloy Composite on Ni-Cu Alloy Template Made by Selective Laser Melting[J]. Chinese Journal of Materials Research, 2021, 35(1): 1-6.

全文: PDF(2026 KB)   HTML
摘要: 

采用优化的SLM成形参数,用激光选区熔化(SLM)增材制造技术制备了三维Ni-Cu合金。使用三维Ni-Cu合金基底材料用化学气相沉积法(CVD)制备Ni-Cu合金/石墨烯复合材料,研究了CVD法生长反应温度对石墨烯结构的影响并分析其原因。结果表明,石墨烯层的厚度随着反应温度的提高而减小。与未生长石墨烯的样品相比,在100℃石墨烯复合使复合材料的热扩散系数提高了12.5%。用SLM增材制造技术和金属模型结构设计成形三维Ni-Cu合金,实现了对石墨烯片层取向的控制,结合CVD法优化在Ni-Cu合金表面生长石墨烯工艺可调控石墨烯的结构。

关键词 复合材料激光选区熔化Ni-Cu合金石墨烯化学气相沉积导热    
Abstract

The Ni-Cu alloy was prepared by selective laser melting (SLM) additive manufacturing technology, and then was used as substrate material for preparation of graphene/Ni-Cr composite by chemical vapor deposition (CVD). The optimized SLM forming parameters are: 200 W laser power, scanning speed 800 mm/s, single layer thickness 0.05 mm, and scanning pitch 0.06. mm. The as prepared Ni-Cu alloy has a density of up to 98.65% and a Rockwell hardness of 127.4 HV1. Then the CVD deposition process of graphene on the Ni-Cu alloy as substrate material was investigated. Results show that graphene can generate on the surface of Ni-Cu alloy at the reaction temperature range of 900~1100℃ and graphene/Ni-Cu alloy composite material was obtained. The thickness of the generated graphene layer gradually decreased with the increase of the reaction temperature. The thermal conductivity of the prepared graphene/Ni-Cu alloy composite material was characterized. The top graphene layer can increase the thermal diffusion coefficient of the Ni-Cu alloy material by 12.5%, which presents a good application prospect for the composite in fields such as radiator, thermal conductive materials and so on.

Key wordscomposite    selective laser melting    Ni-Cu alloy    graphene    Chemical Vapor Deposition    thermal conductivity
收稿日期: 2020-05-25     
ZTFLH:  TB331  
基金资助:国家自然科学基金(51671091);深圳市知识创新计划基础研究项目(JCYJ20180213102634650)
作者简介: 刘主峰,男,1996年生,博士生
图1  Ni-Cu合金/石墨烯复合材料的制备流程示意图
图2  Cu粉、Ni粉和Ni-Cu合金粉末的扫描电镜照片和粒径分布
图3  SLM成形材料的XRD谱和扫描电镜照片
图4  SLM成形材料元素分布的总谱、CuK谱和NiK谱
%(mass fraction)%(mole fraction)
NiK62.3464.17
CuK37.6635.83
表1  SLM成形材料元素的含量
图5  在不同温度用CVD法生长石墨烯的拉曼谱、G峰和2D峰强度的比值以及2D峰的半高宽变化规律
图6  Ni-Cu合金/石墨烯复合材料的热扩散系数
图7  Ni-Cu合金/石墨烯复合材料的导热模型分析
1 Kruth J. P., Froyen L., Vaerenbergh J. V., et al. Selective laser melting of iron-based powder [J]. Mater. Process. Technol., 2004,149: 616
2 Losurdo M., Giangregorio M. M., Capezzuto P., et al. Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure [J]. PCCP, 2011, 13: 20836
3 Muñoz R., Gómez-Aleixandre C., Review of CVD synthesis of graphene [J]. Chem. Vap. Deposition, 2013, 19: 297
4 Stefan T., Alfonso R., Paul H., et al. Engineering polycrystalline Ni films to improve thickness uniformity of the chemical-vapor-deposition-grown graphene films [J]. Nanotechnology, 2010, 21: 015601
5 Robinson Z. R., Tyagi P., Murray T. M., et al. Substrate grain size and orientation of Cu and Cu-Ni foils used for the growth of graphene films [J]. Journal of Vacuum Science & Technology A Vacuum Surfaces & Films, 2011, 30: 011401-011401-011407
6 Hsieh Y. P., Wang Y. W., Ting C. C., et al. Effect of catalyst morphology on the quality of CVD grown graphene [J]. Journal of Nanomaterials, 2013 (2013) 6
7 Hodge N.E., Ferencz R.M., Solberg J.M., Implementation of a thermomechanical model for the simulation of selective laser melting [J]. Comput. Mech., 2014, 54: 33
8 Yan C., Hao L., Hussein A., et al. Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting [J]. Mater. Design, 2014, 55: 533
9 Wang X., Dong L., Zhang B., et al. Controlled growth of Cu–Ni nanowires and nanospheres for enhanced microwave absorption properties [J]. Nanotechnology, 2016, 27: 125602
10 Bai Z., Chen X., Yang K., et al. Hydrogenation of dicyclopentadiene resin and its monomer over high efficient CuNi alloy catalysts [J]. ChemistrySelect, 2019, 4: 6035
11 Yan C., Liang H., Hussein A., et al. Microstructure and mechanical properties of aluminium alloy cellular lattice structures manufactured by direct metal laser sintering [J]. Materials Science & Engineering A, 2015, 628: 238
12 Yan C., Liang H., Raymont D.. Evaluations of cellular lattice structures manufactured using selective laser melting [J]. International Journal of Machine Tools & Manufacture, 2012, 62: 32
13 Habib M. R., Liang T., Yu X., et al. A review of theoretical study of graphene chemical vapor deposition synthesis on metals: nucleation, growth, and the role of hydrogen and oxygen [J]. Rep. Prog. Phys., 2018, 81: 036501
14 Cunha T. H. R., Ek-Weis J., Lacerda R. G., et al. Graphene chemical vapor deposition at very low pressure: The impact of substrate surface self-diffusion in domain shape [J]. Appl. Phys. Lett., 2014, 105: 1312
15 A. K. Geim, Graphene: status and prospects [J]. Science, 2009, 324: 1530
16 Park B. J., Choi J. S., Eom J. H., et al. Defect-free graphene synthesized directly at 150℃ via chemical vapor deposition with no transfer [J]. ACS Nano, 2018, 12: 2008
17 Nan L., Lei F., Boya D., et al. Universal segregation growth approach to wafer-size graphene from non-noble metals [J]. Nano Lett., 2011, 11: 297
18 Shu H., Tao X. M., Ding F.. What are the active carbon species during graphene chemical vapor deposition growth? [J]. Nanoscale, 2015, 7: 1627
19 Ferrari A. C., Meyer J. C., Scardaci V., et al. Raman spectrum of graphene and graphene layers [J]. Phys. Rev. Lett., 2006, 97: 187401
20 Fang W., Hsu A. L., Song Y., et al. A review of large-area bilayer graphene synthesis by chemical vapor deposition [J]. Nanoscale, 2015, 7: 20335
21 Balandin A. A., Ghosh S., Bao W., et al. Superior thermal conductivity of single-layer graphene [J]. Nano Lett., 2008, 8: 902
22 Cabrera H., Mendoza D., Benítez J. L., et al. Thermal diffusivity of few-layers graphene measured by an all-optical method [J]. Journal of Physics D Applied Physics, 2015, 48: 465501
23 Karcher H.. The triply periodic minimal surfaces of Alan Schoen and their constant mean curvature companions [J]. Manuscripta Mathematica, 1989, 64(3): 291
24 Yang Z., Yan C., Liu J., et al. Designing 3D graphene networks via a 3D-printed Ni template [J]. RSC Adv., 2015, 5(37): 29397
25 Balandin A. A.. Thermal properties of graphene and nanostructured carbon materials [J]. Nat. Mater., 2011, 10(8): 569
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.