Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (10): 721-729    DOI: 10.11901/1005.3093.2021.323
  研究论文 本期目录 | 过刊浏览 |
输尿管支架表面化学接枝镀铜涂层及其性能
李建中1,2, 朱博轩1, 王振宇2, 赵静1(), 范连慧2, 杨柯1
1.中国科学院金属研究所 沈阳 110016
2.中国人民解放军北部战区总医院 沈阳 110083
Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent
LI Jianzhong1,2, ZHU Boxuan1, WANG Zhenyu2, ZHAO Jing1(), FAN Lianhui2, YANG Ke1
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.General Hospital of Northern Theater Command, PLA, Shenyang 110083, China
引用本文:

李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
Jianzhong LI, Boxuan ZHU, Zhenyu WANG, Jing ZHAO, Lianhui FAN, Ke YANG. Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent[J]. Chinese Journal of Materials Research, 2022, 36(10): 721-729.

全文: PDF(3303 KB)   HTML
摘要: 

采用聚多巴胺接枝化学镀铜方法在316L不锈钢表面制备载铜聚多巴胺涂层,使用扫描电镜、原子力显微镜、X射线光电子能谱、电感耦合等离子体质谱仪等手段表征其表面形貌、成分和铜离子释放量并将其与细菌和细胞共培养,研究了涂层的抗感染、抗结石性能和生物相容性。结果表明,载铜涂层的厚度为27 nm,分布均匀,其中的铜以Cu、CuO和Cu2O的形式存在。将涂层在人工尿液中浸泡14 d,铜离子每天的释放量接近。将涂层分别与大肠杆菌和金黄色葡萄球菌培养24 h后,抗菌率为96.2%和95.9%。在金黄色葡萄球菌悬液中浸泡30 d后在涂层表面沉积的钙离子和镁离子含量分别为48.7 mg/L和235.3 mg/L,明显低于对照组。细胞增殖实验的结果表明,这种涂层无细胞毒性。

关键词 材料表面与界面功能涂层化学接枝镀铜法输尿管支架抗结石生物相容性    
Abstract

Bacteria adhesion and encrustation formation on the surface of ureteral stents have been common complications clinically. Herewith, the Cu grafting polydopamine coating was prepared on 316L stainless steel via polydopamine graft agent assisted electroless Cu plating method, in order to create a coating with performance of anti-infection, anti-stone formation and good biocompatibility for the ureteral stent surface. While the surface morphology, composition and copper ions release of the coatings were assessed by means of scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy and inductively coupled plasma mass spectrometry. Samples were incubated with bacteria and cells respectively, so that to examine the antibacterial ability, encrustation resistance and biocompatibility of coatings. The results show that the coating is evenly distributed. The copper in the coating consists of Cu, CuO and Cu2O and its thickness is 27.0 nm. The content of releasing copper for each day remains nearly constant after immersion in artificial urine. The antibacterial rates against Escherichia coli and Staphylococcus aureus are 96.2% and 95.9% after incubating for 24 hours, respectively. The contents of calcium and magnesium of samples, which are deposited in the human urine coupled with Staphylococcus aureus for 30 days, are 48.7 mg/L and 235.3 mg/L, respectively, which is significantly lower than that of the control group. Cells proliferation assay shows no cytotoxicity.

Key wordssurface and interface in the materials    functional coating    chemical grafting copper    ureteral stent    anti-encrustation    biocompatibility
收稿日期: 2021-05-24     
ZTFLH:  O647.9  
基金资助:国家重点研发计划(2018YFC1105504);辽宁省博士科研启动基金计划(2019-BS-255);辽宁省科学技术计划(2020JH2/10300159)
作者简介: 李建中,男,1985年生,博士生
ComponentNaClNaH2PO4Na3C6H5O7MgSO4NaSO4KClNa2C2O4CaCl2
Quantity/g6.174.590.9440.4632.4084.750.0430.638
表1  人工尿液的成分[23]
图1  316L不锈钢和载铜聚多巴胺涂层样品表面的形貌
图2  载铜聚多巴胺涂层的面扫图
图3  316L不锈钢、聚多巴胺涂层和载铜聚多巴胺涂层样品的AFM形貌
图4  用椭圆偏振光谱仪检测样品的膜厚
图5  载铜聚多巴胺涂层的XPS分析结果
Sputtering time/sCuCuOCu2O
402.90.81.5
604.52.63.4
807.53.95.4
表2  溅射不同时间的载铜聚多巴胺涂层中Cu、CuO和Cu2O的含量
图6  不同样品在人工尿液中浸泡后每天释放的铜离子含量
图7  不同材料与细菌培养24 h后的活细菌数量和抗菌率
图8  材料与细菌浸泡培养30 d后活细菌的数量和抗菌率
图9  不同材料在尿液中沉积30 d后表面结石中钙、镁离子的含量
图10  UECs与不同材料浸提液培养不同时间后的相对增殖率
图11  多巴胺聚合反应式[26]
1 Garg A, Mishra K G, Bharti P K, et al. Observation of double J stent bacterial colonisation and its correlation with bacteriuria frequency [J]. J. Evol. Med. Dent. Sci., 2017, 6: 5861
2 Szell T, Dressler F F, Goelz H, et al. In vitro effects of a novel coating agent on bacterial biofilm development on ureteral stents [J]. J. Endourol., 2019, 33: 225
doi: 10.1089/end.2018.0616
3 Lombardo R, Tubaro A, Nunzio C D. Ureteral stent encrustation: epidemiology, pathophysiology, management and current technology [J]. J. Urol., 2021, 205: 68
doi: 10.1097/JU.0000000000001343
4 Oderda M, Lacquaniti S, Fasolis G. Allium stent for the treatment of a malignant ureteral stenosis: a paradigmatic case [J]. Urologia J., 2018, 85: 87
doi: 10.5301/uj.5000249
5 Choi J, Chung K J, Choo S H, et al. Long-term outcomes of two types of metal stent for chronic benign ureteral strictures [J]. BMC Urol., 2019, 19: 34
doi: 10.1186/s12894-019-0465-5 pmid: 31060531
6 Rebl H, Renner J, Kram W, et al. Prevention of encrustation on ureteral stents: which surface parameters provide guidance for the development of novel stent materials? [J]. Polymers, 2020, 12: 558
doi: 10.3390/polym12030558
7 Roy R, Tiwari M, Donelli G, et al. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action [J]. Virulence, 2018, 9: 522
doi: 10.1080/21505594.2017.1313372 pmid: 28362216
8 Mosayyebi A, Vijayakumar A, Yue Y Q, et al. Engineering solutions to ureteral stents: material, coating and design [J]. Cent. Eur. J. Urol., 2017, 70: 270
9 Riedl C R, Witkowski M, Plas E, et al. Heparin coating reduces encrustation of ureteral stents: a preliminary report [J]. Int. J. Antimicrob. Agents, 2002, 19: 507
doi: 10.1016/S0924-8579(02)00097-3
10 Chew B H, Davoudi H, Li J M, et al. An in vivo porcine evaluation of the safety, bioavailability, and tissue penetration of a ketorolac drug-eluting ureteral stent designed to improve comfort [J]. J. Endourol., 2010, 24: 1023
doi: 10.1089/end.2009.0523 pmid: 20367085
11 Krambeck A E, Walsh R S, Denstedt J D, et al. A novel drug eluting ureteral stent: a prospective, randomized, multicenter clinical trial to evaluate the safety and effectiveness of a ketorolac loaded ureteral stent [J]. J. Urol., 2010, 183: 1037
doi: 10.1016/j.juro.2009.11.035 pmid: 20092835
12 Felício M R, Silveira G G O S, Oshiro K G N, et al. Polyalanine peptide variations may have different mechanisms of action against multidrug-resistant bacterial pathogens [J]. J. Antimicrob. Chemother., 2021, 76: 1174
doi: 10.1093/jac/dkaa560 pmid: 33501992
13 Mishra B, Basu A, Chua R R Y, et al. Site specific immobilization of a potent antimicrobial peptide onto silicone catheters: evaluation against urinary tract infection pathogens [J]. J. Mater. Chem., 2014, 2B: 1706
14 Gultekinoglu M, Sarisozen Y T, Erdogdu C, et al. Designing of dynamic polyethyleneimine (PEI) brushes on polyurethane (PU) ureteral stents to prevent infections [J]. Acta Biomater., 2015, 21: 44
doi: 10.1016/j.actbio.2015.03.037 pmid: 25848724
15 Leigh B L, Cheng E, Xu L J, et al. Antifouling photograftable zwitterionic coatings on PDMS substrates [J]. Langmuir, 2019, 35: 1100
doi: 10.1021/acs.langmuir.8b00838 pmid: 29983076
16 Wang Y X, Sun Y L, Gu Y H, et al. Articular cartilage-inspired surface functionalization for enhanced lubrication [J]. Adv. Mater. Interfaces, 2019, 6:1900180
doi: 10.1002/admi.201900180
17 Ren L, Xu L, Feng J W, et al. In vitro study of role of trace amount of Cu release from Cu-bearing stainless steel targeting for reduction of in-stent restenosis [J]. J. Mater. Sci. Mater. Med., 2012, 23: 1235
doi: 10.1007/s10856-012-4584-8
18 Ren L, Xu X H, Liu H, et al. Biocompatibility and Cu ions release kinetics of copper-bearing titanium alloys [J]. J. Mater. Sci. Technol., 2021, 95: 237
doi: 10.1016/j.jmst.2021.03.074
19 Jin S J, Qi X, Wang T M, et al. In vitro study of stimulation effect on endothelialization by a copper bearing cobalt alloy [J]. J. Biomed. Mater. Res., 2018, 106A: 561
20 Zhao J, Ren L, Zhang B C, et al. In vitro study on infectious ureteral encrustation resistance of Cu-bearing stainless steel [J]. J. Mater. Sci. Technol., 2017, 33: 1604
doi: 10.1016/j.jmst.2017.03.025
21 Zhao J, Cao Z Q, Lin H, et al. In vivo research on Cu-bearing ureteral stent [J]. J. Mater. Sci. Mater. Med., 2019, 30: 83
doi: 10.1007/s10856-019-6285-z
22 Jin Y Y, Zhu Z Q, Liang L, et al. A facile heparin/carboxymethyl chitosan coating mediated by polydopamine on implants for hemocompatibility and antibacterial properties [J]. Appl. Surf. Sci., 2020, 528: 146539
doi: 10.1016/j.apsusc.2020.146539
23 Haddad L. Synthetic urine and method of making same[P]. US Pat, 7109035, 2006
24 Shen F Y. Construction of copper mediated in situ nitric oxide-generating coating for cardiovascular interventional devices [D]. Chengdu: Southwest Jiaotong University, 2016
24 申芳瑜. 用于血管介入器械表面改性的铜介导原位催化产生一氧化氮涂层的构建 [D]. 成都: 西南交通大学, 2016
25 Xu C H, Tian M, Liu L, et al. Fabrication and properties of silverized glass fiber by dopamine functionalization and electroless plating [J]. J. Electrochem. Soc., 2012, 159: D217
doi: 10.1149/2.056204jes
26 Wang L R, Guan H Y, Chen S S, et al. Preparation and antibacterial function of an Cu-bearing chitosan coating on silicone rubber surface [J]. Chin. J. Mater. Res., 2020, 34: 575
doi: 10.11901/1005.3093.2020.047
26 王立蓉, 关宏宇, 陈姗姗 等. 硅橡胶表面壳聚糖载铜凝胶涂层的制备及其抗菌功能 [J]. 材料研究学报, 2020, 34: 575
doi: 10.11901/1005.3093.2020.047
27 Shao H. Construction of multilyered composites from poly (dopamine) modified carbon nanotubes and the interactions with cells [D]. Guangzhou: Jinan University, 2017
27 邵 晗. 聚多巴胺修饰碳纳米管静电叠层复合膜的制备及细胞作用研究 [D]. 广州: 暨南大学, 2017
28 Nandakumar R, Santo C E, Madayiputhiya N, et al. Quantitative proteomic profiling of the Escherichia coli response to metallic copper surfaces [J]. Biometals, 2011, 24: 429
doi: 10.1007/s10534-011-9434-5 pmid: 21384090
29 Zanzen U, Bovenkamp-Langlois L, Klysubun W, et al. The interaction of copper ions with Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli: an X-ray absorption near-edge structure (XANES) spectroscopy study [J]. Arch. Microbiol., 2018, 200: 401
doi: 10.1007/s00203-017-1454-2
30 Iribarnegaray V, Navarro N, Robino L, et al. Magnesium-doped zinc oxide nanoparticles alter biofilm formation of Proteus mirabilis [J]. Nanomedicine, 2019, 14: 1551
doi: 10.2217/nnm-2018-0420
31 Multanen M, Talja M, Hallanvuo S, et al. Bacterial adherence to silver nitrate coated poly-L-lactic acid urological stents in vitro [J]. Urol. Res., 2000, 28: 327
pmid: 11127712
32 Milo S, Hathaway H, Nzakizwanayo J, et al. Prevention of encrustation and blockage of urinary catheters by Proteus mirabilis via pH-triggered release of bacteriophage [J]. J. Mater. Chem., 2017, 5B: 5403
33 Donlan R M, Costerton J W. Biofilms: survival mechanisms of clinically relevant microorganisms [J]. Clin. Microbiol. Rev., 2002, 15: 167
doi: 10.1128/CMR.15.2.167-193.2002 pmid: 11932229
34 Stickler D J, Jones G L, Russell A D, et al. Control of encrustation and blockage of Foley catheters [J]. Lancet, 2003, 361: 1435
pmid: 12727400
[1] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[5] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[6] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[7] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[8] 张红亮, 赵国庆, 欧军飞, Amirfazli Alidad. 基于聚多巴胺的超疏水棉织物的一锅法制备及其油水分离性能[J]. 材料研究学报, 2022, 36(2): 114-122.
[9] 崔丽, 孙丽丽, 郭鹏, 马鑫, 王舒远, 汪爱英. 沉积时间对聚醚醚酮表面类金刚石薄膜的结构和性能的影响[J]. 材料研究学报, 2022, 36(11): 801-810.
[10] 李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
[11] 李修贤, 邱万奇, 焦东玲, 钟喜春, 刘仲武. α籽晶促进低温反应溅射沉积α-Al2O3薄膜[J]. 材料研究学报, 2022, 36(1): 8-12.
[12] 范金辉, 李鹏飞, 梁晓军, 梁建平, 徐长征, 蒋力, 叶祥熙, 李志军. 镍-不锈钢复合板轧制过程中界面的结合机制[J]. 材料研究学报, 2021, 35(7): 493-500.
[13] 卢壹梁, 杜瑶, 王成, 辛丽, 朱圣龙, 王福会. 纳米Al2O3TiO2改性有机硅涂层对304不锈钢高温氧化行为的影响[J]. 材料研究学报, 2021, 35(6): 458-466.
[14] 张会臣, 漆雪莲. 跑合过程引发钛合金水基润滑的超低摩擦特性[J]. 材料研究学报, 2021, 35(5): 349-356.
[15] 刘福广, 陈胜军, 潘红根, 董鹏, 马英民, 黄杰, 杨二娟, 米紫昊, 王艳松, 雒晓涛. 热喷涂复合结构MCrAlY/8YSZ热障涂层的抗剥落能力[J]. 材料研究学报, 2021, 35(4): 313-320.