|
|
铸态退火2024合金在不同温度下的变形行为 |
杨兵1, 刘春忠1( ), 高恩志1, 孙巍2, 刘停1, 张洪宁1, 朱明伟1, 卢天倪1 |
1.沈阳航空航天大学材料科学与工程学院 沈阳 110136 2.辽宁忠旺集团有限公司 辽阳 111003 |
|
Deformation Behavior of Cast and Annealed 2024 Al-alloy at Different Temperatures |
YANG Bing1, LIU Chunzhong1( ), GAO Enzhi1, SUN Wei2, LIU Ting1, ZHANG Hongning1, ZHU Mingwei1, LU Tianni1 |
1.School of Material Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China 2.Liaoning Zhongwang Group Co. Ltd., Liaoyang 111003, China |
引用本文:
杨兵, 刘春忠, 高恩志, 孙巍, 刘停, 张洪宁, 朱明伟, 卢天倪. 铸态退火2024合金在不同温度下的变形行为[J]. 材料研究学报, 2022, 36(10): 730-738.
Bing YANG,
Chunzhong LIU,
Enzhi GAO,
Wei SUN,
Ting LIU,
Hongning ZHANG,
Mingwei ZHU,
Tianni LU.
Deformation Behavior of Cast and Annealed 2024 Al-alloy at Different Temperatures[J]. Chinese Journal of Materials Research, 2022, 36(10): 730-738.
1 |
Deng Y L, Zhang X M. Development of aluminium and aluminium alloy [J]. Chin. J. Nonferrous Met., 2019, 29: 2115
|
1 |
邓运来, 张新明. 铝及铝合金材料进展 [J]. 中国有色金属学报, 2019, 29: 2115
|
2 |
Jiang J F, Wang Y, Xiao G F, et al. Influence of modification, refinement and heat treatment on mechanical properties of A356 Al-alloy components prepared by squeeze casting [J]. Chin. J. Mater. Res., 2020, 34: 881
|
2 |
姜巨福, 王 迎, 肖冠菲 等. 变质细化和热处理对挤压铸造成形A356铝合金构件性能的影响 [J]. 材料研究学报, 2020, 34: 881
|
3 |
Gong X T, Zhou J, Xu W J, et al. The development of isothermal forging technology for aluminum alloy [J]. China Metalf. Equip. Manufact. Technol., 2009, 44: 23
|
3 |
龚小涛, 周 杰, 徐戊娇 等. 铝合金等温锻造技术发展 [J]. 锻压装备与制造技术, 2009, 44: 23
|
4 |
Wu D X, Liang Q, Wang J. Hot deformation behavior and constitutive equation of 2024A aluminum alloy [J]. Spec. Cast. Nonferrous Alloy, 2020, 40: 233
|
4 |
吴道祥, 梁 强, 王 敬. 2024A铝合金高温流变行为及本构关系研究 [J]. 特种铸造及有色合金, 2020, 40: 233
|
5 |
Zhang T, Zhang S H, Li L, et al. Modified constitutive model and workability of 7055 aluminium alloy in hot plastic compression [J]. J. Central South Univ., 2019, 26: 2930
doi: 10.1007/s11771-019-4225-1
|
6 |
Zhai C H, Feng C H, Chai L H, et al. Rheological deformation behavior of X2A66 aluminum-lithium alloy during isothermal compression [J]. Rare Metal Mater. Eng., 2017, 46: 90
|
6 |
翟彩华, 冯朝辉, 柴丽华 等. X2A66铝锂合金等温压缩时的流变变形行为 [J]. 稀有金属材料与工程, 2017, 46: 90
|
7 |
Zhong L W, Gao W L, Feng Z H, et al. Microstructure characteristics and constitutive modeling for elevated temperature flow behavior of Al-Cu-Li X2A66 alloy [J]. J. Mater. Res., 2018, 33: 912
doi: 10.1557/jmr.2017.466
|
8 |
He H L, Yi Y P, Cui J D, et al. Hot deformation characteristics and processing parameter optimization of 2219 Al alloy using constitutive equation and processing map [J]. Vacuum, 2018, 160: 293
doi: 10.1016/j.vacuum.2018.11.048
|
9 |
Wu B, Li M Q, Ma D W. The flow behavior and constitutive equations in isothermal compression of 7050 aluminum alloy [J]. Mater. Sci. Eng., 2012, 542A: 79
|
10 |
Ashwath P, Joel J, Kumar H G P, et al. Processing and characterization of extruded 2024 series of aluminum alloy [J]. Mater. Today Proceed., 2018, 5(5): 12479
|
11 |
Li T, Tao J L, Wang Q Y. The mechanism of fatigue crack initiation of 2024-T3 and 2524-T34 aluminum alloys [J]. Chin. J. Mater. Res., 2011, 25: 67
|
11 |
李 棠, 陶俊林, 王清远. 2024-T3和2524-T34铝合金疲劳裂纹的萌生机制 [J]. 材料研究学报, 2011, 25: 67
|
12 |
Wu A, Wu Y, Li G J, et al. A high-fit constitutive equation for 2024 aluminum alloy homogenized cast bar [J]. J. Plast. Eng., 2020, 27: 146
|
12 |
吴 昂, 吴 莹, 李国俊 等. 一种2024铝合金均匀化铸棒的高拟合度本构方程 [J]. 塑性工程学报, 2020, 27: 146
|
13 |
May A, Belouchrani M A, Taharboucht S, et al. Influence of heat treatment on the fatigue behaviour of two aluminium alloys 2024 and 2024 plated [J]. Proc. Eng., 2010, 2: 1795
doi: 10.1016/j.proeng.2010.03.193
|
14 |
Mirzadeh H. Simple physically-based constitutive equations for hot deformation of 2024 and 7075 aluminum alloys [J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 1614
doi: 10.1016/S1003-6326(15)63765-7
|
15 |
Feng J M, Eliane G, Cao X D, et al. Study on constitutive equations of 2024 aluminum alloy considering the compensation of strain [J]. J. Plast. Eng., 2017, 24(6): 151
|
15 |
冯建铭, Eliane G, 曹旭东 等. 考虑应变补偿的Al2024合金本构方程研究 [J]. 塑性工程学报, 2017, 24(6): 151
|
16 |
Chen L, Zhao G Q, Gong J, et al. Hot deformation behaviors and processing maps of 2024 Aluminum alloy in as-cast and homogenized states [J]. J. Mater. Eng. Perf., 2015, 24: 5002
doi: 10.1007/s11665-015-1734-4
|
17 |
Li L, Li H Z, Liang X P, et al. Flow stress behavior of high-purity Al-Cu-Mg alloy and microstructure evolution [J]. J. Central South Univ., 2015, 22: 815
doi: 10.1007/s11771-015-2587-6
|
18 |
Sun J W, Zhang R W, Li S Y, et al. Research on the thermal denaturation of 5182 aluminium alloy [J]. Nonferrous Metals Sci. Eng., 2018, 9(5): 43
|
18 |
孙军伟, 张荣伟, 李升燕 等. 5182铝合金热变形行为研究 [J]. 有色金属科学与工程, 2018, 9(5): 43
|
19 |
Dai Q S, Liu X, Fu P, et al. High-temperature deformation behavior and processing map of 5083 aluminum alloy [J]. J. Central South Univ. (Sci. Technol.), 2017, 48: 1988
|
19 |
戴青松, 刘 栩, 付 平 等. 5083铝合金高温变形行为及加工图 [J]. 中南大学学报(自然科学版), 2017, 48: 1988
|
20 |
Cui Z Q, Qin Y C. Metallurgy and Heat Treatment 2nd ed. [M]. Beijing: China Machine Press, 2011
|
20 |
崔忠圻, 覃耀春. 金属学与热处理. 第2版 [M]. 北京: 机械工业出版社, 2011
|
21 |
Lin Y C, Xia Y C, Chen X M, et al. Constitutive descriptions for hot compressed 2124-T851 aluminum alloy over a wide range of temperature and strain rate [J]. Comput. Mater. Sci., 2010, 50: 227
doi: 10.1016/j.commatsci.2010.08.003
|
22 |
Mandal S, Rakesh V, Sivaprasad P V, et al. Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel [J]. Mater. Sci. Eng., 2009, 500A: 114
|
23 |
Medina S F, Hernandez C A. General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels [J]. Acta Mater., 1996, 44: 137
doi: 10.1016/1359-6454(95)00151-0
|
24 |
Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: forging of Ti-6242 [J]. Metall. Trans., 1984, 15A: 1883
|
25 |
Chen L, Si J Y, Liu S H, et al. Hot deformation behavior and hot processing map of extruded FGH4096 superalloy [J]. Mater. Rev., 2019, 33: 2047
|
25 |
陈 龙, 司家勇, 刘松浩 等. 挤压态FGH4096合金的热变形行为及热加工图 [J]. 材料导报, 2019, 33: 2047
|
26 |
Yang Y T, Luo R, Cheng X N, et al. High temperature plastic deformation behavior and hot workability of an Alumina-forming Austenitic heat-resisting alloy [J]. Chin. J. Mater. Res., 2019, 33: 232
doi: 10.11901/1005.3093.2018.432
|
26 |
杨雨童, 罗 锐, 程晓农 等. 新型含铝奥氏体耐热合金的高温塑性变形行为和热加工性能 [J]. 材料研究学报, 2019, 33: 232
doi: 10.11901/1005.3093.2018.432
|
27 |
Cepeda-Jiménez C M, Ruano O A, Carsí M, et al. Study of hot deformation of an Al-Cu-Mg alloy using processing maps and microstructural characterization [J]. Mater. Sci. Eng., 2012, 552A: 530
|
28 |
Chen Y Q, Song W W, Pan S P, et al. Effects of coarse S phase on hot deformation behaviors and microstructure evolutions of 2E12 aluminum alloy [J]. Chin. J. Nonferrous Met., 2016, 26: 2267
|
28 |
陈宇强, 宋文炜, 潘素平 等. 粗大S相对2E12铝合金热变形行为及组织演变的影响 [J]. 中国有色金属学报, 2016, 26: 2267
|
29 |
Huang Q X, Wang J L, Liu Z H, et al. Effect of annealing temperature on mechanical properties and microstructure of ECAP-extruded 7005 aluminum alloy [J]. Mater. Rev., 2013, 27(22): 101
|
29 |
黄启祥, 王军丽, 刘兆华 等. 退火温度对ECAP变形后7005铝合金组织性能的影响 [J]. 材料导报, 2013, 27(22): 101
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|