Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (1): 62-72    DOI: 10.11901/1005.3093.2021.211
  研究论文 本期目录 | 过刊浏览 |
Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能
李蕊1(), 王浩1, 张天刚2, 牛伟3
1.中国民航大学 工程技术训练中心 天津 300300
2.中国民航大学航空工程学院 天津 300300
3.天津工业大学机械工程学院 天津 300387
Microstructure and Properties of Laser Clad Ti2Ni+TiC+Al2O3+CrxSy Composite Coating on Ti811 Alloy
LI Rui1(), WANG Hao1, ZHANG Tiangang2, NIU Wei3
1.Engineering Technology Training Center, Civil Aviation University of China, Tianjin 300300, China
2.College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China
3.College of Mechanical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
引用本文:

李蕊, 王浩, 张天刚, 牛伟. Ti811合金表面激光熔覆Ti2Ni+TiC+Al2O3+CrxSy复合涂层的组织和性能[J]. 材料研究学报, 2022, 36(1): 62-72.
Rui LI, Hao WANG, Tiangang ZHANG, Wei NIU. Microstructure and Properties of Laser Clad Ti2Ni+TiC+Al2O3+CrxSy Composite Coating on Ti811 Alloy[J]. Chinese Journal of Materials Research, 2022, 36(1): 62-72.

全文: PDF(29119 KB)   HTML
摘要: 

以TC4+Ni45+Al2O3+MoS2+Y2O3混合粉末为熔覆材料,采用同轴送粉技术在Ti811合金表面进行激光熔覆制备复合涂层,使用SEM、EDS和XRD等手段分析了涂层的微观组织,测试了涂层的显微硬度和摩擦磨损性能。结果表明,在激光熔覆过程中Ti811合金中的Ni和C分别与Ti发生反应,原位生成金属间化合物Ti2Ni和硬质增强相TiC;MoS2分解后S与Cr发生硫化反应生成了软质润滑相CrxSy。网状形态的Ti2Ni、近球状和枝晶形态的TiC以及点状的Al2O3,均匀分布在熔覆层中。硬质相强化和软质相润滑的共同作用,使激光熔覆层具有较高的显微硬度和较优良的耐磨性能。激光功率为900 W的熔覆层其平均显微硬度值达1303.5HV0.5,其耐磨性能最佳。

关键词 材料表面与界面激光熔覆复合涂层钛合金原位生成摩擦磨损性能    
Abstract

The composite coating of Ti2Ni+TiC+Al2O3+CrxSy was laser cladded on the surface of Ti811 alloy via coaxial powder feeding technology with mixed powders TC4+Ni45+Al2O3+MoS2+Y2O3 as cladding material. The microstructure, microhardness, friction and wear properties of the coating were characterized by means of SEM, EDS, XRD, microhardness tester and friction tester. The results show that the Ni and C of Ti811 alloy react with Ti respectively during laser cladding, so that the intermetallic compound Ti2Ni and hard reinforced phase TiC can form in situ, while the soft lubrication phase CrxSy also formed due to the sulfurization reaction between S and Cr after the decomposition of MoS2. The Ti2Ni-phase may present as network-like, TiC as spheroidal and dendritic, while Al2O3 as punctiform, which all uniformly distributed in the clad coating. The combined action of strengthening of the hard phase and lubrication of the soft phase makes the laser clad coating with higher microhardness and better wear resistance. When the laser power is 900W the average microhardness of the clad coating reaches 1303.5HV0.5 with the best wear resistance.

Key wordssurface and interface in the materials    laser cladding    composite coatings    titanium alloy    in-situ    tribological properties
收稿日期: 2021-04-02     
ZTFLH:  TB331  
基金资助:国家自然科学民航联合研究基金(U1633104);天津市科委教研计划(2019KJ119);中央高校科研基本业务费(3122017017)
作者简介: 李蕊,女,1984年生,硕士
AlVMoCNFeOTi
8.10.991.050.030.010.050.06Bal.
表1  Ti811合金的主要成分
AlVFeCNOTi
5.5~6.83.5~4.50.300.100.050.20Bal.
表2  TC4的主要成分
CrBSiFeCNi
8.91.84.03.00.35Bal.
表3  Ni45的主要成分
图1  激光熔覆层的表面形貌
图2  不同激光功率熔覆层的宏观截面照片
图3  不同激光功率激光熔覆层的X射线衍射谱
图4  不同激光功率激光熔覆层的横截面微观组织形貌
图5  不同激光功率激光熔覆层的微观组织形貌
图6  N2试样熔覆表面的元素分布
COAlSiTiVCrNi
A1Weight%17.344.465.421.941.998.91
Atom%45.115.0942.671.191.194.74
A2Weight%12.666.0556.11.992.3820.82
Atom%36.497.7640.541.361.5912.27
B1Weight%7.891.8355.222.293.2729.17
Atom%13.793.0854.352.122.9723.42
C1Weight%7.513.9385.240.280.472.58
Atom%23.975.5868.210.210.341.68
C2Weight%4.274.4988.382.86
Atom%14.726.8976.382.02
D1Weight%7.316.857.4360.9817.42
Atom%21.1314.869.5544.1710.29
表4  特征相能谱分析结果
图7  Ti-C二元合金相图
图8  熔覆层的显微硬度
图9  Ti811钛合金和涂层的表面磨损形貌
图10  Ti811基材和激光熔覆涂层的摩擦系数
图11  复合涂层和基体的磨损率和磨损量
1 Adebiyi D I, Popoola A P I. Mitigation of abrasive wear damage of Ti-6Al-4V by laser surface alloying [J]. Mater. Des., 2015, 74: 67
2 Ma N, Liu X L, Qiu Z W, et al. Effect of the ratio between tension and bending vibration loads on the fatigue behavior and failuremode of titanium alloy TA11 [J]. Adv Mat Res, 2014, 88: 27
3 Zhao Y Q, Lu B N. Effects of alloying compositions on the properties of Ti811 alloy [J]. Rare Metal Mat Eng., 1994, 23(3): 59
4 Dai J J, Zhu J Y, Chen C Z, et al. High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: a review [J]. J. Alloys Compd., 2016, 685: 784
5 Liu Y N, Sun R L, Niu W, et al. Microstructure and friction and wear resistance of laser cladding composite coating on Ti811 surface [J]. Chin. J. Las., 2019, 46(1): 157
5 刘亚楠, 孙荣禄, 牛 伟等. Ti811表面激光熔覆复合涂层的微观组织及摩擦磨损性能 [J]. 中国激光, 2019, 46(1): 157
6 Zhang T G, Sun R L. Microstructure and properties of TC4 laser cladding coating on Ti811 titanium alloy surface [J]. Trans. China Weld. Inst., 2019, 40(4): 41
6 张天刚, 孙荣禄. Ti811合金表面TC4激光熔覆层组织及性能 [J]. 焊接学报, 2019, 40(4): 41
7 Zhang J C, Shi S H, Gong Y Q, et al. Research progress of laser cladding technology [J]. Surf. Coat. Technol., 2020, 49(10): 1
7 张津超, 石世宏, 龚燕琪等. 激光熔覆技术研究进展 [J]. 表面技术, 2020, 49(10): 1
8 Liu Y N, Yang L J, Yang X J, et al. Optimization of microstructure and properties of composite coating by laser cladding on titanium alloy [J]. Ceram. Int., 2021, 47(2): 2230
9 Zhang T G, Sun R L, Zhang XY, et al. Microstructure of In-situ synthesized Ti based TiC-TiB2 composite coating on surface of Ti811 alloy by laser cladding [J]. Mater Rev, 2018, 32(7): 2208
9 张天刚, 孙荣禄, 张雪洋等. Ti811表面激光熔覆原位合成TiC-TiB2复合Ti基涂层的显微组织分析 [J]. 材料导报A: 综述篇, 2018, 32(7): 2208
10 Zhang T G, Xiao H Q, Sun R L, et al. Microstructure and Friction Wear Properties of Ni-based Laser Cladding on Ti811 Surface [J]. Surf. Coat. Technol., 2019, 48(12): 182
10 张天刚, 肖海强, 孙荣禄等. Ti811表面Ni基激光熔覆层显微组织及摩擦磨损性能的研究 [J]. 表面技术, 2019, 48(12): 182
11 Li S, Dong F B, Diao L, tl ea. Microstructure and properties of laser clad Ni/Ti-Al2O3 coating [J]. Applied Laser, 2017, 37(3): 309
11 李 帅, 董丰波, 刁 磊等. 激光熔覆Ni/Ti-Al2O3涂层性能研究 [J]. 应用激光, 2017, 37(3): 309
12 Cai Y C, Luo Z, Feng M N, et al. The effect of TiC/Al2O3 composite ceramic reinforcement on tribological behavior of laser cladding Ni60 alloys coatings [J]. Surface and Coatings Technology, 2016, 291(15): 222
13 Sun R L, Niu W, Lei Y W, et al. Microstructure and tribological properties of laser clad NiCrBSi+Ni/MoS2 coating on TC4 titanium alloy [J]. T Mater Heat Treat., 2014, 35(6): 157
13 孙荣禄, 牛 伟, 雷贻文等. 钛合金TC4激光熔覆NiCrBSi+Ni/MoS2涂层组织和摩擦磨损性能 [J]. 材料热处理学报, 2014, 35(6): 157
14 Yu P C, Liu X B, Lu X L, et al. Research development of self-lubrication and wear-resistant coatings prepared by laser cladding [J]. Journal of Mater Prot, 2016, 49(1): 48
14 余鹏程, 刘秀波, 陆小龙等. 激光熔覆制备自润滑耐磨涂层的研究进展 [J]. 材料保护, 2016, 49(1): 48
15 Ouyang C S, Liu X B, Luo Y S, et al. High-temperature tribological properties of Ti3SiC2-Ni based self-lubricating composite coatings prepared on 304 stainless steel by laser cladding [J]. Surf. Coat. Technol., 2020, 49(8): 161
15 欧阳春生, 刘秀波, 罗迎社等. 304不锈钢表面激光熔覆制备Ti3SiC2-Ni基自润滑复合涂层的高温摩擦学性能 [J]. 表面技术, 2020, 49(8): 161
16 Beckmann N, Romero P A, Linsler D, et al. Origins of folding instabilities on polycrystalline metal surfaces [J]. Phys. Rev. Appl., 2014, 2(6): 064004
17 Zhang T G, Zhuang H F, Yao B, et al. Effect of Y2O3 on microstructure and properties of Ti-based laser cladding layer [J]. Acta Materiae Compositae Sninca., 2020, 37(6): 1390
17 张天刚, 庄怀风, 姚 波等. Y2O3对钛基激光熔覆层组织及性能的影响 [J]. 复合材料学报, 2020, 37(6): 1390
18 Li J N, Yu H J, Gong S L, et al. Influence of Al2O3-Y2O3 and Ce-Al-Ni amorphous alloy on physical properties of laser synthetic composite coatings on titanium alloys [J]. Surf. Coat. Technol., 2014, 247: 55
19 Zhao S J, Qi W J, Huang Y H, et al. Research on thermal cycle characteristics and microstructure performance of TC4 laser cladding NiCrCoAlY [J]. Trans. China Weld. Inst., 2020, 41(9): 89
19 赵盛举, 祁文军, 黄艳华等. TC4激光熔覆NiCrCoAlY热循环特性及组织性能 [J]. 焊接学报, 2020, 41(9): 89
20 Zhang Z Q, Yang F, Zhang H W, et al. Microstructure and wear resistance of TiCx reinforced Ti-based laser cladding coating with rare earth [J]. Chinese J Aeronaut, 2021, 42(7): 43
20 张志强, 杨凡, 张宏伟, 等. 含稀土TiCx增强钛基激光熔覆层组织与耐磨性 [J]. 航空学报, 2021, 42(7): 43
21 Zhang T G, Zhuang H F, Xiao H Q, et al. Effect of rare earth on microstructure and friction and wear properties of Ti-based laser cladding layer [J]. Chin. J. Las., 2019, 46(9): 128
21 张天刚, 庄怀风, 肖海强等. 稀土对Ti基激光熔覆层组织与摩擦磨损性能的影响 [J]. 中国激光, 2019, 46(9): 128
22 Goodarzi D M, Pekkarinen J, Salminen A. Analysis of laser cladding process parameter influence on the clad bead geometry [J]. Weld World, 2017, 61: 883
23 He X, Kong D J, Song R G. Influence of power on microstructure and properties of laser cladding Al-TiC-CeO2 composite coatings [J]. Rare Metal Mater. Eng., 2019, 48(11): 3634
23 贺 星, 孔德军, 宋仁国. 功率对激光熔覆Al-TiC-CeO2复合涂层组织与性能的影响 [J]. 稀有金属材料与工程, 2019, 48(11): 3634
24 Ihsan B. Thermochemical Data of Pure Substances (Volume 1 and 2) [M]. Beijing: Science Press, 2003
24 伊赫桑·巴伦. 纯物质热化学数据手册(上, 下卷) [M]. 北京: 科学出版社, 2003
25 Ma X G. Study on the morphology and growth mechanism of TiC synthesized via the Al melt reaction method [D]. Jinan: Shandong University, 2010
25 马晓光. 铝熔体反应合成TiC的微观形貌与生长机制研究 [D]. 济南: 山东大学, 2010
26 Zhao Y H, Sun J, Li J F. Effect of rare earth oxide on the properties of laser cladding layer and machining vibration suppressing in side milling [J]. Appl. Surf. Sci., 2014, 321(1): 387
27 Wang W J, Fu Z K, Cao X, et al. The role of lanthanum oxide on wear and contact fatigue damage resistance of laser cladding Fe-based alloy coating under oil lubrication condition [J]. Tribol Int, 2016, 94: 470
28 Zhang X F, Wang A H, Zhang X L, et al. Microstructure and tribological properties of laser claddingNi45-CaF2-WS2 self-lubrication coating [J]. Chin. J. Nonferrous, 2008, 18(2): 215
28 章小峰, 王爱华, 张祥林等. 激光熔覆Ni45-CaF2-WS2自润滑涂层组织与性能 [J]. 中国有色金属学报, 2008, 18(2): 215
29 Wang Z W, Zhuang S G, Liu H Q, et al. Research progress and development trend of self-lubricating composite coatings by laser cladding [J]. Surf. Coat. Technol., 2018, 47(5): 104
29 王志文, 庄宿国, 刘海青等. 激光熔覆自润滑复合涂层研究进展及发展趋势 [J]. 表面技术, 2018, 47(5): 104
30 Liu H Q, Liu X B, Meng X J, et al. Study on γ-NiCrAlTi/TiC+TiWC2/CrS+Ti2CS high-temperature self-lubrication wear resistant composite coating on Ti-6Al-4V by lase cladding [J]. Chin. J. Lasers, 2014, 41(3): 81
30 刘海青, 刘秀波, 孟祥军等. Ti-6Al-4V合金激光熔覆γ-NiCrAlTi/TiC+TiWC2/CrS+Ti2CS高温自润滑耐磨复合涂层研究 [J]. 中国激光, 2014, 41(3): 81
31 Wen S Z, Huang P. Principles of Tribology [M]. Beijing: Tsinghua University Press, 2002: 348
31 温诗铸, 黄 平. 摩擦学原理 [M]. 北京: 清华大学出版社, 2002: 348
32 Zhang P L, Liu X P, Lu Y L, et al. Microstructure and wear behavior of Cu-Mo-Si coatings by laser cladding [J]. Appl. Surf. Sci., 2014, 311(30): 709
33 Gao Q S, Yan H, Qin Y, et al. Self-lubricating wear resistant composite coating Ti-Ni+TiN+MoS2/TiS prepared on Ti-6Al-4V alloy by laser cladding [J]. Chin. J. Mater. Res., 2018, 32(12): 921
33 高秋实, 闫 华, 秦 阳等. 钛合金表面激光熔覆Ti-Ni+TiN+MoS2/TiS自润滑复合涂层 [J]. 材料研究学报, 2018, 32(12): 921
[1] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] 杜菲菲, 李超, 李显亮, 周尧尧, 阎庚旭, 李国建, 王强. 磁控溅射TiAlTaN/TaO/WS复合涂层及其钛合金的切削性能[J]. 材料研究学报, 2023, 37(4): 301-307.
[5] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.
[6] 张瑞雪, 马英杰, 贾焱迪, 黄森森, 雷家峰, 邱建科, 王平, 杨锐. 亚稳 β 钛合金热处理显微组织演变和元素再分配行为[J]. 材料研究学报, 2023, 37(3): 161-167.
[7] 田志刚, 李新梅, 秦忠, 王晓辉, 刘伟斌, 黄永. CoCrFeNiTi x 高熵合金涂层的显微组织和耐磨性能[J]. 材料研究学报, 2023, 37(3): 219-227.
[8] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[9] 陈开旺, 张鹏林, 李树旺, 牛显明, 胡春莲. 莫来石粉末化学镀镍和涂层的高温摩擦学性能[J]. 材料研究学报, 2023, 37(1): 39-46.
[10] 王伟, 周山琦, 宫鹏辉, 张浩泽, 史亚鸣, 王快社. 退火温度对TC4钛合金热轧板材的显微组织、织构和力学性能影响[J]. 材料研究学报, 2023, 37(1): 70-80.
[11] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[12] 程红杰, 刘黄娟, 姜婷, 王法军, 李文. 近红外反射超疏水黄色涂层的制备和性能[J]. 材料研究学报, 2022, 36(9): 687-698.
[13] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[14] 蔡雨升, 韩洪智, 任德春, 吉海宾, 雷家峰. 化学腐蚀工艺对激光选区熔化成形TC4钛合金表面粗糙度的影响[J]. 材料研究学报, 2022, 36(6): 435-442.
[15] 王俊, 王克鲁, 鲁世强, 李鑫, 欧阳德来, 邱仟, 高鑫, 张开铭. TA5钛合金的应变补偿物理本构模型和加工图[J]. 材料研究学报, 2022, 36(3): 175-182.