Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (1): 21-28    DOI: 10.11901/1005.3093.2020.472
  研究论文 本期目录 | 过刊浏览 |
奥氏体化温度对900 MPaHSLA钢显微组织和晶体学演变的影响
高野1, 任家宽1, 李志峰2, 崔聪1, 陈俊1, 刘振宇1()
1.东北大学材料科学与工程学院 沈阳 110819
2.内蒙古科技大学材料与冶金学院 包头 014010
Effect of Austenitizing Temperature on Microstructure and Crystallographic Evolution of 900 MPa Grade HSLA Steel
GAO Ye1, REN Jiakuan1, LI Zhifeng2, CUI Cong1, CHEN Jun1, LIU Zhenyu1()
1.School of Material Science & Engineering, Northeastern University, Shenyang 110819, China
2.College of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, China
引用本文:

高野, 任家宽, 李志峰, 崔聪, 陈俊, 刘振宇. 奥氏体化温度对900 MPaHSLA钢显微组织和晶体学演变的影响[J]. 材料研究学报, 2022, 36(1): 21-28.
Ye GAO, Jiakuan REN, Zhifeng LI, Cong CUI, Jun CHEN, Zhenyu LIU. Effect of Austenitizing Temperature on Microstructure and Crystallographic Evolution of 900 MPa Grade HSLA Steel[J]. Chinese Journal of Materials Research, 2022, 36(1): 21-28.

全文: PDF(6236 KB)   HTML
摘要: 

采用OM和SEM研究了奥氏体化温度对HSLA钢组织演变和低温韧性的影响。结果表明:奥氏体化温度由850℃升高至950℃(实验钢的AC3温度为819℃)并保温30 min后,奥氏体的平均晶粒尺寸由7.22 μm增大到17.39 μm,在850~950℃淬火后的显微组织均为板条马氏体,屈服强度和抗拉强度均呈下降趋势,延伸率没有明显的变化,但是-20℃下的冲击韧性由97 J显著降低到31 J。使用EBSD和ARPGE软件的晶体学分析结果表明,随着奥氏体化温度的升高晶粒尺寸增大且变体选择增强,表现为奥氏体晶粒大部分区域内由单个变体对占据。同时,850℃试样变体之间呈现较明显的CP(Close packed)组合方式,奥氏体化温度升高到950℃后变体之间的组合方式更倾向以Bain group组合,同一组的变体在极图上的位置较近,变体之间的取向差也较小,表明大角度错取向的操作因子比例减少,大角度晶界密度降低,阻碍裂纹扩展的能力降低和恶化冲击韧性。

关键词 金属材料HSLA钢奥氏体化温度变体韧性    
Abstract

The effect of austenitizing temperature on the microstructure evolution and low temperature toughness of high strength low alloy (HSLA) steel was investigated by OM and SEM. The results show that with the increase of austenitizing temperature from 850℃ to 950℃ while heat treated for 30 min, the average austenite grain size increases from 7.22 μm to 17.39 μm (the temperature of AC3 is 819℃). After quenching at 850~950℃, the microstructure is lath martensite. The yield strength and tensile strength decreased respectively, and there was no obvious variation in elongation. However, the toughness decreased significantly from 97 J to 31 J. The crystallographic analysis results by EBSD and ARPGE software show that the grain size increased and the variants selection enhanced with the increase of quenching temperature, which show that austenite grain is mainly occupied by a single pair of variants. In addition, the combination mode of the variants for the 850A sample tends to show a CP (Close packed) combination mode. When the austenitizing temperature increased to 950℃, the combination mode of the variants is more likely to be Bain group combination, and the proportion of operation factors representing high angle misorientation decreases, which leads to the decrease of high angle grain boundary density, and the ability to hinder crack propagation is reduced, further deteriorating the impact toughness.

Key wordsmetallic materials    HSLA steel    austenitizing temperature    variant    toughness
收稿日期: 2020-11-06     
ZTFLH:  TG142.1+1  
基金资助:兴辽英才创新领军人才项目(XLYC1902034)
作者简介: 高野,男,1996年生,硕士生
图1  不同奥氏体化温度下原始奥氏体晶粒的形貌
图2  原始奥氏体晶粒尺寸的分布
图3  不同温度奥氏体化后实验钢的微观组织
图4  实验钢在不同温度奥氏体化后的力学性能
图5  实验钢在不同温度的冲击断口形貌
图6  实验钢的IPF、晶界分布与频率图
Temperature / ℃

DLAGB

(5~15°)

DHAGB

(15~45°)

DHAGB

(>45°)

8500.290.130.71
9500.410.150.40
表1  晶界密度
图7  IPF图和{100}极图
图8  实验钢的Bain/CP组晶体学特征
OperatorOR/DirectionOperatorOR/Direction
O0O1247.1°/[56 24 49]α
O160.0°/[1 1 0]αO1350.5°/[20 5 16]α
O260.0°/[1 1 1]αO14-50.5°/[20 5 16]α
O310.5°/[1 1 1]αO15-50.5°/[16 24 15]α
O4-60.0°/[1 1 0]αO16-14.8°/[4 56 21]α
O510.5°/[1 1 0]αO17-47.1°/[56 24 49]α
O650.5°/[16 24 15]αO1821.0°/[0 4 9]α
O749.4°/[1 0 1]αO1957.2°/[21 7 18]α
O849.4°/[1 1 1]αO2020.6°/[5 9 9]α
O957.2°/[22 13 26]αO2151.7°/[9 9 5]α
O10-57.2°/[22 13 26]αO2220.6°/[4 0 13]α
O1114.8°/[4 56 21]αO23-57.2°/[21 7 18]α
表2  关联K-S关系的操作因子
图9  操作因子比例
1 Chen G, Luo X B, Chai F, et al. Effect of double quenching on microstructure and impact toughness of a high strength low alloy steel [J]. Chin. J. Mater. Res., 2020, 34: 705
1 陈 刚, 罗小兵, 柴 锋等. 两次淬火对HSLA钢组织和冲击韧性的影响 [J]. 材料研究学报, 2020, 34: 705
2 Kim N J. The physical metallurgy of HSLA linepipe steels—a review [J]. JOM, 1983, 35(4): 21
3 Wang L J, Cai Q W, Yu W, et al. Microstructure and mechanical properties of 1500 MPa grade ultra-high strength low alloy steel [J]. Acta Metall. Sin., 2010, 46: 687
3 王立军, 蔡庆伍, 余 伟等. 1500 MPa级低合金超高强钢的微观组织与力学性能 [J]. 金属学报, 2010, 46: 687
4 Li A M, Hu M J. Influence of quenching temperature on microstructure and properties of 40Cr steel by zero time holding quenching [J]. Adv. Mater. Res., 2011, 215: 25
5 Lu Y M, Liang Y L, Long S L, et al. Effect of the martensite lath on toughness of 20CrNi2Mo steel [J]. Chin. J. Mater. Res., 2018, 32: 290
5 卢叶茂, 梁益龙, 龙绍檑等. 马氏体板条控制单元对20CrNi2Mo钢韧性的影响 [J]. 材料研究学报, 2018, 32: 290
6 Cao H W, Luo X H, Liu S, et al. Effect of quenching temperature on cryogenic mechanical properties of a 7Ni steel [J]. Chin. J. Mater. Res., 2018, 32: 388
6 曹宏玮, 罗兴宏, 刘 实等. 淬火温度对7Ni钢低温力学性能的影响 [J]. 材料研究学报, 2018, 32: 388
7 Wu B B, Wang X L, Wang Z Q, et al. New insights from crystallography into the effect of refining prior austenite grain size on transformation phenomenon and consequent mechanical properties of ultra-high strength low alloy steel [J]. Mater. Sci. Eng., 2019, 745A: 126
8 You Y, Shang C J, Chen L, et al. Investigation on the crystallography of reverted structure and its effect on the properties of low carbon steel [J]. Mater. Sci. Eng., 2012, 546A: 111
9 Gourgues A F, Flower H M, Lindley T C. Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures [J]. Mater. Sci. Technol., 2000, 16: 26
10 Morris J W, Lee C S, Guo Z. The nature and consequences of coherent transformations in steel [J]. ISIJ Int., 2003, 43: 410
11 Wang C F, Wang M Q, Shi J, et al. Effect of microstructural refinement on the toughness of low carbon martensitic steel [J]. Scr. Mater., 2008, 58: 492
12 Takayama N, Miyamoto G, Furuhara T. Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel [J]. Acta Mater., 2012, 60: 2387
13 Wu B B, Wang Z Q, Wang X L, et al. Toughening of martensite matrix in high strength low alloy steel: regulation of variant pairs [J]. Mater. Sci. Eng., 2019, 759A: 430
14 Xi X H, Wang J L, Chen L Q, et al. On the role of Cu addition in toughness improvement of coarse grained heat affected zone in a low carbon high strength steel [J]. J. Mater. Sci., 2020, 55: 10863
15 Morito S, Huang X, Furuhara T, et al. The morphology and crystallography of lath martensite in alloy steels [J]. Acta Mater., 2006, 54: 5323
16 Morito S, Tanaka H, Konishi R, et al. The morphology and crystallography of lath martensite in Fe-C alloys [J]. Acta Mater., 2003, 51: 1789
17 Kitahara H, Ueji R, Tsuji N, et al. Crystallographic features of lath martensite in low-carbon steel [J]. Acta Mater., 2006, 54: 1279
18 Wang X L, Wang Z Q, Dong L L, et al. New insights into the mechanism of cooling rate on the impact toughness of coarse grained heat affected zone from the aspect of variant selection [J]. Mater. Sci. Eng., 2017, 704A: 448
19 Celada-Casero C, Sietsma J, Santofimia M J. The role of the austenite grain size in the martensitic transformation in low carbon steels [J]. Mater. Des., 2019, 167: 107625
20 Olson G B, Cohen M. Kinetics of strain-induced martensitic nucleation [J]. Metall. Trans., 1975, 6A: 791
21 Yang Z Y, Chen J Y, Su J, et al. TEM study on relative orientation between adjacent martensite laths [J]. Trans. Mater. Heat Treat., 2004, 25(6): 35
21 杨卓越, 陈嘉砚, 苏 杰等. 相邻板条马氏体间位向关系的TEM研究 [J]. 材料热处理学报, 2004, 25(6): 35
22 Wang S C, Li Z C, Yi D Q, et al. Orientation relationship of low temperature tempered martensite investigated by electron back scattered diffraction [J]. J. Cent. South Univ. (Sci. Technol.), 2011, 42: 2620
22 王申存, 李志成, 易丹青等. 低温回火马氏体取向关系的电子背散射衍射研究 [J]. 中南大学学报(自然科学版), 2011, 42: 2620
23 Cayron C. One-step model of the face-centred-cubic to body-centred-cubic martensitic transformation [J]. Acta Crystallogr., 2013, 69A: 498
24 Mao G J, Cao R, Cayron C, et al. Microstructural evolution and mechanical property development with nickel addition in low-carbon weld butt joints [J]. J. Mater. Process. Technol., 2018, 262: 638
25 Cayron C. EBSD imaging of orientation relationships and variant groupings in different martensitic alloys and widmanstätten iron meteorites [J]. Mater. Charact., 2014, 94: 93
26 Wang W, Shan Y Y, Yang K. Study of high strength pipeline steels with different microstructures [J]. Mater. Sci. Eng., 2019, 502A: 38
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.