|
|
奥氏体化温度对900 MPa级HSLA钢显微组织和晶体学演变的影响 |
高野1, 任家宽1, 李志峰2, 崔聪1, 陈俊1, 刘振宇1( ) |
1.东北大学材料科学与工程学院 沈阳 110819 2.内蒙古科技大学材料与冶金学院 包头 014010 |
|
Effect of Austenitizing Temperature on Microstructure and Crystallographic Evolution of 900 MPa Grade HSLA Steel |
GAO Ye1, REN Jiakuan1, LI Zhifeng2, CUI Cong1, CHEN Jun1, LIU Zhenyu1( ) |
1.School of Material Science & Engineering, Northeastern University, Shenyang 110819, China 2.College of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, China |
引用本文:
高野, 任家宽, 李志峰, 崔聪, 陈俊, 刘振宇. 奥氏体化温度对900 MPa级HSLA钢显微组织和晶体学演变的影响[J]. 材料研究学报, 2022, 36(1): 21-28.
Ye GAO,
Jiakuan REN,
Zhifeng LI,
Cong CUI,
Jun CHEN,
Zhenyu LIU.
Effect of Austenitizing Temperature on Microstructure and Crystallographic Evolution of 900 MPa Grade HSLA Steel[J]. Chinese Journal of Materials Research, 2022, 36(1): 21-28.
1 |
Chen G, Luo X B, Chai F, et al. Effect of double quenching on microstructure and impact toughness of a high strength low alloy steel [J]. Chin. J. Mater. Res., 2020, 34: 705
|
1 |
陈 刚, 罗小兵, 柴 锋等. 两次淬火对HSLA钢组织和冲击韧性的影响 [J]. 材料研究学报, 2020, 34: 705
|
2 |
Kim N J. The physical metallurgy of HSLA linepipe steels—a review [J]. JOM, 1983, 35(4): 21
|
3 |
Wang L J, Cai Q W, Yu W, et al. Microstructure and mechanical properties of 1500 MPa grade ultra-high strength low alloy steel [J]. Acta Metall. Sin., 2010, 46: 687
|
3 |
王立军, 蔡庆伍, 余 伟等. 1500 MPa级低合金超高强钢的微观组织与力学性能 [J]. 金属学报, 2010, 46: 687
|
4 |
Li A M, Hu M J. Influence of quenching temperature on microstructure and properties of 40Cr steel by zero time holding quenching [J]. Adv. Mater. Res., 2011, 215: 25
|
5 |
Lu Y M, Liang Y L, Long S L, et al. Effect of the martensite lath on toughness of 20CrNi2Mo steel [J]. Chin. J. Mater. Res., 2018, 32: 290
|
5 |
卢叶茂, 梁益龙, 龙绍檑等. 马氏体板条控制单元对20CrNi2Mo钢韧性的影响 [J]. 材料研究学报, 2018, 32: 290
|
6 |
Cao H W, Luo X H, Liu S, et al. Effect of quenching temperature on cryogenic mechanical properties of a 7Ni steel [J]. Chin. J. Mater. Res., 2018, 32: 388
|
6 |
曹宏玮, 罗兴宏, 刘 实等. 淬火温度对7Ni钢低温力学性能的影响 [J]. 材料研究学报, 2018, 32: 388
|
7 |
Wu B B, Wang X L, Wang Z Q, et al. New insights from crystallography into the effect of refining prior austenite grain size on transformation phenomenon and consequent mechanical properties of ultra-high strength low alloy steel [J]. Mater. Sci. Eng., 2019, 745A: 126
|
8 |
You Y, Shang C J, Chen L, et al. Investigation on the crystallography of reverted structure and its effect on the properties of low carbon steel [J]. Mater. Sci. Eng., 2012, 546A: 111
|
9 |
Gourgues A F, Flower H M, Lindley T C. Electron backscattering diffraction study of acicular ferrite, bainite, and martensite steel microstructures [J]. Mater. Sci. Technol., 2000, 16: 26
|
10 |
Morris J W, Lee C S, Guo Z. The nature and consequences of coherent transformations in steel [J]. ISIJ Int., 2003, 43: 410
|
11 |
Wang C F, Wang M Q, Shi J, et al. Effect of microstructural refinement on the toughness of low carbon martensitic steel [J]. Scr. Mater., 2008, 58: 492
|
12 |
Takayama N, Miyamoto G, Furuhara T. Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel [J]. Acta Mater., 2012, 60: 2387
|
13 |
Wu B B, Wang Z Q, Wang X L, et al. Toughening of martensite matrix in high strength low alloy steel: regulation of variant pairs [J]. Mater. Sci. Eng., 2019, 759A: 430
|
14 |
Xi X H, Wang J L, Chen L Q, et al. On the role of Cu addition in toughness improvement of coarse grained heat affected zone in a low carbon high strength steel [J]. J. Mater. Sci., 2020, 55: 10863
|
15 |
Morito S, Huang X, Furuhara T, et al. The morphology and crystallography of lath martensite in alloy steels [J]. Acta Mater., 2006, 54: 5323
|
16 |
Morito S, Tanaka H, Konishi R, et al. The morphology and crystallography of lath martensite in Fe-C alloys [J]. Acta Mater., 2003, 51: 1789
|
17 |
Kitahara H, Ueji R, Tsuji N, et al. Crystallographic features of lath martensite in low-carbon steel [J]. Acta Mater., 2006, 54: 1279
|
18 |
Wang X L, Wang Z Q, Dong L L, et al. New insights into the mechanism of cooling rate on the impact toughness of coarse grained heat affected zone from the aspect of variant selection [J]. Mater. Sci. Eng., 2017, 704A: 448
|
19 |
Celada-Casero C, Sietsma J, Santofimia M J. The role of the austenite grain size in the martensitic transformation in low carbon steels [J]. Mater. Des., 2019, 167: 107625
|
20 |
Olson G B, Cohen M. Kinetics of strain-induced martensitic nucleation [J]. Metall. Trans., 1975, 6A: 791
|
21 |
Yang Z Y, Chen J Y, Su J, et al. TEM study on relative orientation between adjacent martensite laths [J]. Trans. Mater. Heat Treat., 2004, 25(6): 35
|
21 |
杨卓越, 陈嘉砚, 苏 杰等. 相邻板条马氏体间位向关系的TEM研究 [J]. 材料热处理学报, 2004, 25(6): 35
|
22 |
Wang S C, Li Z C, Yi D Q, et al. Orientation relationship of low temperature tempered martensite investigated by electron back scattered diffraction [J]. J. Cent. South Univ. (Sci. Technol.), 2011, 42: 2620
|
22 |
王申存, 李志成, 易丹青等. 低温回火马氏体取向关系的电子背散射衍射研究 [J]. 中南大学学报(自然科学版), 2011, 42: 2620
|
23 |
Cayron C. One-step model of the face-centred-cubic to body-centred-cubic martensitic transformation [J]. Acta Crystallogr., 2013, 69A: 498
|
24 |
Mao G J, Cao R, Cayron C, et al. Microstructural evolution and mechanical property development with nickel addition in low-carbon weld butt joints [J]. J. Mater. Process. Technol., 2018, 262: 638
|
25 |
Cayron C. EBSD imaging of orientation relationships and variant groupings in different martensitic alloys and widmanstätten iron meteorites [J]. Mater. Charact., 2014, 94: 93
|
26 |
Wang W, Shan Y Y, Yang K. Study of high strength pipeline steels with different microstructures [J]. Mater. Sci. Eng., 2019, 502A: 38
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|