Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (12): 892-904    DOI: 10.11901/1005.3093.2020.127
  研究论文 本期目录 | 过刊浏览 |
TC2钛合金的高温热变形行为
李沐泽1,2, 柏春光1,2(), 张志强1, 赵建1, 徐东生1,2, 王岩峰3
1.中国科学院金属研究所 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
3.朝阳金达钛业股份有限公司 朝阳 122000
Hot Deformation Behavior of TC2 Titanium Alloy
LI Muze1,2, BAI Chunguang1,2(), ZHANG Zhiqiang1, ZHAO Jian1, XU Dongsheng1,2, WANG Yanfeng3
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.Chaoyang Jinda Titanium Co. , Ltd. , Chaoyang 122000, China
引用本文:

李沐泽, 柏春光, 张志强, 赵建, 徐东生, 王岩峰. TC2钛合金的高温热变形行为[J]. 材料研究学报, 2020, 34(12): 892-904.
Muze LI, Chunguang BAI, Zhiqiang ZHANG, Jian ZHAO, Dongsheng XU, Yanfeng WANG. Hot Deformation Behavior of TC2 Titanium Alloy[J]. Chinese Journal of Materials Research, 2020, 34(12): 892-904.

全文: PDF(27024 KB)   HTML
摘要: 

对TC2钛合金的高温变形行为进行了有限元模拟和热压缩实验研究,使用有限元自洽模型模拟提高流动应力曲线修正精度,分析材料的应力应变曲线特征,得到其高温流动本构方程和激活能,并进行了光学显微镜观察研究其微观组织演变规律,发现在高温低应变速率下α相的球化程度较高。绘制出TC2钛合金的功率耗散图和热加工图,结合应变速率敏感系数m研究了受m值控制的不同变形机制,最终确定了TC2钛合金的最佳加工窗口:(I)760~825℃、0.007~0.024 s-1;(II)850~900℃、0.018~0.37 s-1;(III)900~950℃、1~10 s-1,在此区间功率耗散因子较大,在材料变形过程中发生充分动态再结晶,试样的微观组织呈细小等轴状。

关键词 金属材料TC2钛合金热变形行为热加工图组织演变    
Abstract

The high temperature deformation behavior of TC2 Ti-alloy was investigated by means of finite element simulations and isothermal hot compression tests parallelly. Firstly, the characteristic stress-strain curves of TC2 were analyzed, and the high temperature constitutive equation and activation energy were acquired . Secondly, the microstructure evolution was observed with optical microscope. It was found that the globularization of α-phase is obvious at high temperature and low strain rate. Thirdly, the power dissipation and thermal processing map of TC2 Ti-alloy were drawn. And the deformation mechanism was characterized by strain rate sensitivity exponent m. Lastly, and the optimized processing window of TC2 Ti-alloy was determined as: (I) 760~825℃, 0.007~0.024 s-1; (II) 850~900℃, 0.018~0.37 s-1; and (III) 900~950℃, 1~10 s-1. Within these ranges the power dissipation rate of TC2 Ti-alloy is significant and sufficient dynamic recrystallization occurs in the process of deformation.

Key wordsmetallic materials    TC2 titanium alloy    hot deformation    processing map    microstructural evolution
收稿日期: 2020-04-17     
ZTFLH:  TG146  
基金资助:国家重点研发计划(2017YFB0306201)
作者简介: 李沐泽,男,1994年生,硕士
图1  实验用样品的原始组织
ElementAlMnFeOCHNTi
Weight percentage4.01.670.0300.100.00600.00250.0040Bal.
表1  实验用TC2钛合金的实际成分
图2  热模拟压缩实验过程示意图
图3  在压缩实验过程中试样温度的变化
图4  用插值法修正应力(ε=0.4,ε˙=1 s-1)
图5  用插值法和方程法温度修正后流动应力曲线对比
  图6不同修正方法模拟结果的比较
图7  在相同应变速率、不同温度条件下TC2钛合金的流动应力曲线
图 8  在相同温度、不同应变速率条件下TC2钛合金的流动应力曲线
图9  在700℃、0.1 s-1条件下数值模拟(应变分布)和实验结果的比较
图10  在700℃、0.1 s-1条件下不同变形区域材料的微观组织
图11  同一应变速率(1 s-1)不同温度的金相组织
图12  在同一温度(750℃)不同应变速率的金相组织
图13  lnε˙-lnσ,lnε˙-σ,lnε˙-lnsinhασ关系曲线
图14  lnsinhασ-1000T关系曲线
图15  lnZ-lnsinhασ关系曲线
图16  计算值与实验值的比较
图17  TC2钛合金的应变速率敏感系数m图
图18  TC2钛合金的功率耗散图
图19  TC2钛合金的热加工图
图20  应变速率对初生α相体积分数的影响
图21  变形温度对初生α相体积分数的影响
图22  TC2钛合金的热加工图中对应不同区域组织的形貌
1 Zhu Z S. Recent research and development of titanium alloys for aviation application in China [J]. J. Aeronaut. Mater., 2014, 34(4): 44
1 朱知寿. 我国航空用钛合金技术研究现状及发展 [J]. 航空材料学报, 2014, 34(4): 44
2 .Titanium and titanium alloys, Extruded bars and shapes, Aircraft quality [S].
3 Zhu Z S. Research and development of advanced new type titanium alloys for aeronautical applications [J]. Aeronaut. Sci. Technol., 2012, (1): 5
3 朱知寿. 航空结构用新型高性能钛合金材料技术研究与发展 [J]. 航空科学技术, 2012, (01): 5
4 Gao P F, Zhan M,Fan X G, et al. Hot deformation behavior and microstructure evolution of TA15 titanium alloy with nonuniform microstructure [J]. Mater. Sci. Eng., A, 2017, 689: 243
5 OuYang D L, Cui X, Lu S Q, et al. Hot compressive deformation and dynamic recrystallization of as-forged Ti-alloy TB6 during β process [J]. Chin. J. Mater. Res., 2019, 33(03): 218
5 欧阳德来, 崔霞, 鲁世强等. 锻态TB6钛合金β相区压缩变形行为和动态再结晶 [J]. 材料研究学报, 2019, 33(03): 218
6 Chen W, Zeng W D, Xu J W, et al. Deformation behavior and microstructure evolution during hot working of Ti60 alloy with lamellar starting microstructure [J]. J. Alloys Compd., 2019, 792: 389
7 Lin Y C, Pang G D, Jiang Y Q, et al. Hot compressive deformation behavior and microstructure evolution of a Ti-55511 alloy with basket-weave microstructures [J]. Vacuum, 2019, 169: 108878
8 Bao R Q, Huang X, Cao C X, et al. Application of processing maps in hot working of titanium alloy [J]. Mater. Rev., 2004, 18(07): 30
8 鲍如强, 黄旭, 曹春晓等. 加工图在钛合金中的应用 [J]. 材料导报, 2004, 18(07): 30
9 Kumar K B, Saxena K K, Dey S R, et al. Processing map-microstructure evolution correlation of hot compressed near alpha titanium alloy (TiHy 600) [J]. J. Alloys Compd., 2016, 691: 906
10 Wang Z, Wang X N, Zhu Z S. Characterization of high-temperature deformation behavior andprocessing map of TB17 titanium alloy [J]. J. Alloys Compd., 2017, 692: 149
11 Balasundar I, Ravi K R, Raghu T. On the high temperature deformation behaviour of titanium alloy BT3-1 [J]. Mater. Sci. Eng., A, 2017, 684: 135
12 Xu X, Dong L M, Ba H B, et al. Hot deformation behavior and microstructural evolution of beta C titanium alloy in β phase field [J]. Trans. Nonferrous Met. Soc. China, 2016, 26(11): 2874
13 Fan X G, Yang H. Internal-state-variable based self-consistent constitutive modeling for hot working of two-phase titanium alloys coupling microstructure evolution [J].Int. J. Plast., 2011, 27(11): 1833
14 Jia B H. Study on plastic deformation mechanism and constitutive relation of titanium alloy [D]. Beijing: Beijing Institute of Technology, 2015
14 贾宝华. 钛合金材料的塑性变形机制及本构关系研究 [D]. 北京:北京理工大学, 2015
15 Zhang Z X, Fan J K, Tang B, et al. Microstructural evolution and FCC twinning behavior during hot deformation of high temperature titanium alloy Ti65 [J]. J. Mater. Sci. Technol., 2020, 49: 56
16 Liang H Q,Guo H Z,Nan Y, et al.The identification of dynamic recrystallization type during hot deformation process [J]. Sci. China,2014, 44(12): 1309
16 梁后权, 郭鸿镇, 南洋等.高温变形过程中的动态再结晶类型识别 [J]. 中国科学, 2014, 44(12): 1309
17 Chen H Q, Lin H Z, Guo L, et al. Progress on hot deformation mechanisms andmicrostructure evolution of titanium alloys [J]. J. Mater. Eng., 2007, (01): 61
17 陈慧琴, 林好转, 郭灵等. 钛合金热变形机制及微观组织演变规律的研究进展 [J]. 材料工程, 2007, (01): 61
18 Meng Q G. Research on plastic deformation behavior of ATI425 alloy [D]. Beijing: University of Chinese Academy of Sciences, 2016
18 孟庆刚. ATI425合金的塑性变形行为研究 [D]. 北京: 中国科学院大学, 2016
19 Chang L W, Zheng L W. Isothermal compression behavior and constitutive modeling of Ti-5Al-5Mo-5V-1Cr-1Fe alloy [J]. Nonferrous Met. Soc. China, Trans., 2018, 28(06): 1114
20 Mikhaylovskaya A V, Mosleh A O, et al. Superplastic deformation behaviour and microstructure evolution of near-α Ti-Al-Mn alloy [J]. Mater. Sci. Eng., A, 2017, 708: 469
21 Yu D J, Xu D S,Wang H, et al. Refining constitutive relation by integration of finite element simulations and Gleeble experiments [J]. J. Mater. Sci. Technol., 2019, 35(06): 1039
22 Sellars C M, Mctegart W J. On the mechanism of hot deformation [J]. Acta Metall., 1966, 14(9): 1136
23 Liang H Q, Nan Y, Ning Y Q, et al. Correlation between strain-rate sensitivity and dynamic softening behavior during hot processing [J]. J. Alloys Compd., 2015, 632: 478
24 Han J, Kang S H, Lee S J, et al. Superplasticity in a lean Fe-Mn-Al steel [J]. Nat. Commun., 2017, 8(01): 751
25 Huang B, Miao X, Luo X, et al. Microstructure and texture evolution near the adiabatic shear band (ASB) in TC17 Titanium alloy with starting equiaxed microstructure studied by EBSD [J]. Mater. Charact., 2019, 151: 151
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.