Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (11): 875-880    DOI: 10.11901/1005.3093.2020.086
  研究论文 本期目录 | 过刊浏览 |
电沉积氧化锌纳米柱的带隙和近带边发射蓝移
汤洋1,2()
1.国家能源集团 绿色能源与建筑研究中心 北京 102211
2.北京低碳清洁能源研究院 北京 102211
Band Gap Energy and Near Band Edge Emission Blue Shifts of ZnO Nanorods Prepared by Electrodeposition
TANG Yang1,2()
1.Center for Green Energy and Architecture, China Energy Investment Corporation, Beijing 102211, China
2.National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China
引用本文:

汤洋. 电沉积氧化锌纳米柱的带隙和近带边发射蓝移[J]. 材料研究学报, 2020, 34(11): 875-880.
Yang TANG. Band Gap Energy and Near Band Edge Emission Blue Shifts of ZnO Nanorods Prepared by Electrodeposition[J]. Chinese Journal of Materials Research, 2020, 34(11): 875-880.

全文: PDF(3826 KB)   HTML
摘要: 

用电化学沉积方法制备了ZnO纳米柱阵列。在Zn(NO3)2基础电解液中加入新电解质并引入NH4NO3 和Ga(NO3)3,实现了对ZnO纳米柱阵列的带隙、近带边发射、斯托克斯位移、直径、密度等物理性质的设计和裁剪。可在63~77 nm操控纳米柱的直径。增加电解液中的Ga(NO3)3浓度,阵列的密度可降低到7.0×109 /cm2。新加入电解液中的盐类使ZnO纳米柱的带隙蓝移~50 meV并使光致发光图谱中的近带边发射蓝移53~73 meV以及斯托克斯位移蓝移23 meV,表明可对其非辐射复合进行抑制设计和裁剪。

关键词 无机非金属材料氧化锌电沉积硝酸镓带隙蓝移近带边发射    
Abstract

ZnO nanorod arrays were fabricated by electrodeposition in the traditional electrolytes incorporated with addition of salts such as NH4NO3 and Ga(NO3)3, so that the phyisical properties, such as the diameter, density, band gap energy, near band edge emission and stokes shift of the prepared ZnO nanorod arrays may be designed and tailored. Namely their diameter can be adjusted between 63 nm to 77 nm. With the use of Ga(NO3)3 as the additive, the density of ZnO nanorod arrays can be decreased to 7.0×109 /cm2; the band gap energy of the ZnO nanorod arrays showed blue shift from 53 meV to 73 meV with the stokes shift of 23 meV, which indicated that the new process of involving the Ga(NO3)3 resulted in the suppression of the non-radiative recombination.

Key wordsinorganic nonmetallic materials    ZnO    electrodeposition    gallium nitrate    band gap blue shift    near band edge emission
收稿日期: 2020-03-22     
ZTFLH:  TM23  
基金资助:国家自然科学基金(61404007);北京市优秀人才培养拔尖自然科学项目(2015000021223ZK38)
作者简介: 汤洋,男,1983年生,博士
图1  样品1~5的扫描电子显微镜照片
Samples

Zn(NO3)2

/mmol·L-1

NH4NO3

/mmol·L-1

Ga(NO3)3

/μmol·L-1

Diameter

/nm

Density

/109 cm-2

15--69±2412.0
25-1077±2710.0
35501063±248.3
45502070±288.1
55505073±277.0
表1  ZnO纳米柱的直径和密度
图2  透射和反射光谱
图3  带隙线性拟合图谱,红色直线为线性拟合线
图4  室温光致发光图谱
图5  样品2~5的光致发光图谱在300~470 nm范围的高斯拟合曲线
Samples

NBE 1

/eV

NBE 2

/eV

NBE 3

/eV

Stokes shift /meV
13.353--107
23.4263.2843.05884
33.3753.2703.006125
43.3893.2902.940111
53.4063.3032.98194
表2  近带边发射峰位和斯托克斯位移
1 Jiang H, Jin Y M, Ye X, et al. Review of China's PV industry in the first half of 2020 and outlook in the second half of 2020 [J]. Solar Energy, 2020, 317(9): 5
1 江华, 金艳梅, 叶幸等. 2020年中国光伏产业上半年回顾与下半年展望 [J]. 太阳能, 2020, 317(9): 5
2 Xie L, Wang P, Li Z F, et al. Hydrothermal synthesis and photocatalytic activity of CuO/ZnO composite photocatalyst [J]. Chin. J. Mater. Res., 2019, 33: 728
2 谢亮, 王平, 李之锋等. CuO/ZnO复合光催化剂的制备和性能 [J]. 材料研究学报, 2019, 33: 728
3 Cao P, Bai Y. Preparation and photocatalytic properties of N-doped nano-ZnO/PVC composites [J]. Chin. J. Mater. Res., 2015, 29: 213
3 曹萍, 白越. N掺杂纳米ZnO/聚氯乙烯复合材料的制备和光催化性能 [J]. 材料研究学报, 2015, 29: 213
4 Chen Y, Zhang P, Shang Y H, et al. Controllable synthesis and photocatalytic activity of ZnO nano-cones with different aspect ratio [J]. Chin. J. Mater. Res., 2017, 31: 619
4 陈燕, 张萍, 尚永辉等. 不同纵横比ZnO纳米锥的可控合成及其光催化性能 [J]. 材料研究学报, 2017, 31: 619
5 Li G J, Wang Z, Wang Q, et al. Effect of oxidation time under high magnetic field on the microstructure and optical properties of oxidized co-doped ZnO films [J]. Acta Metall. Sin., 2014, 50: 1538
5 李国建, 王振, 王强等. 强磁场作用时间对氧化法制备的Co掺杂ZnO薄膜微观结构和光学性能的影响 [J]. 材料研究学报, 2014, 50: 1538
6 Hu Y, Xu S W, Li X, et al. Performance of self-powered UV photodetector based on ZnO/ZnS Heterojunction [J]. Chin. J. Mater. Res., 2019, 33: 523
6 胡轶, 徐思伟, 李想等. 自供能ZnO/ZnS异质结紫外探测器的性能研究 [J]. 材料研究学报, 2019, 33: 523
7 Zhao H X, Fang X, Wang Y B, et al. Formation of interface defects of ZnO/ZnS core-shell nanowires and its optical properties investigations [J]. Chin. Opt., 2019, 12: 872
7 赵海霞, 方铉, 王颜彬等. ZnO/ZnS核壳纳米线界面缺陷的形成及发光特性研究 [J]. 中国光学, 2019, 12: 872
8 Su S C, Yang X D, Hu C D. Fabrication of ZnO nanowall-network ultraviolet photodetector on Si substrates [J]. J. Semicond., 2011, 32: 074008
9 Sun X Y, Azad F, Wang S P, et al. Low-cost Flexible ZnO microwires array ultraviolet photodetector embedded in PAVL substrate [J]. Nano Res. Lett., 2018, 13: 277
10 Cao S Y, Zhang J J, Li W Q, et al. Near room temperature and large-area synthesis of ZnO/Cu2O heterojunction for photocatalytic properties [J]. Chem. Phys. Lett., 2018, 692: 14
11 Amany A, Wang D B, Wang J Z, et al. Enhanced the UV response of AlN coated ZnO nanorods photodetector [J] J. Alloys Compd., 2019, 776: 111
12 Kim D, Yun I, Kim H. Fabrication of rough Al doped ZnO films deposited by low pressure chemical vapor deposition for high efficiency thin film solar cells [J]. Curr. Appl. Phys., 2010, 10(): S459
13 Luka G, Witkowski B S, Wachnicki L. Electrical and mechanical stability of aluminum-doped ZnO films grown on flexible substrates by atomic layer deposition [J]. Mater. Sci. Eng., 2014, 186B: 15
14 Coman T, Ursu E L, Nica V, al el. Improving the uncommon (110) growing orientation of Al-doped ZnO thin films through sequential pulsed laser deposition [J]. Thin Solid Films, 2014, 571: 198
15 Duygulu N E, Kodolbas A O, Ekerim A. Effects of argon pressure and r.f. power on magnetron sputtered aluminum doped ZnO thin films [J]. J. Cryst. Growth, 2014, 394: 116
16 Kumar A, Huang N, Staedler T, et al. Mechanical characterization of aluminum doped zinc oxide (Al: ZnO) nanorods prepared by sol-gel method [J]. Appl. Surf. Sci., 2013, 265: 758
17 Chen Z W, Zhan G H, Wu Y P, et al. Sol-gel-hydrothermal synthesis and conductive properties of Al-doped ZnO nanopowders with controllable morphology [J]. J. Alloys Compd., 2014, 587: 692
18 Tang Y, Chen J. Optical band gap blue shift and stokes shift in Al-doped ZnO nanorods by electrodeposition [J]. Chin. J. Lumin., 2014, 35: 1165
18 汤洋, 陈颉. 电沉积掺铝氧化锌纳米柱的光学带隙蓝移与斯托克斯位移 [J]. 发光学报, 2014, 35: 1165
19 Tang Y, Guo L D, Zhang Z G, et al. Aluminium doping and optical property control of electrodeposited zinc oxide nanorods induced by ammonium nitrate [J]. Opt. Precis. Eng., 2015, 23: 1288
19 汤洋, 郭逦达, 张增光等. 硝酸铵诱导电沉积氧化锌纳米柱的铝掺杂及光学性质操控 [J]. 光学·精密工程, 2015, 23: 1288
20 Chen J, Ye H, Aé L, et al. Tapered aluminum-doped vertical zinc oxide nanorod arrays as light coupling layer for solar energy applications [J]. Sol. Energ. Mat. Sol., 2011, 95C: 1437
21 Guo L D, Tang Y, Chiang F K, et al. Density-controlled growth and passivation of ZnO nanorod arrays by electrodeposition [J]. Thin Solid Films, 2017, 638: 426
22 Tang Y, Chen J, Greiner D, et al. Fast growth of high work function and high-quality ZnO nanorods from an aqueous solution [J]. J. Phys. Chem., 2011, 115C: 5239
23 Cho S, Jung S H, Jang J W, et al. Simultaneous synthesis of Al-doped ZnO nanoneedles and zinc aluminum hydroxides through Use of a seed layer [J]. Cryst. Growth Des., 2008, 8: 4553
24 Mahamuni S, Borgohain K, Bendre B S, et al. Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots [J]. J. Appl. Phys., 1999, 85: 2861
25 Tang Y, Zhao Y, Zhang Z G, et al. Hydrothermal synthesis and properties of ZnO nanorod arrays [J] Chin. J. Mater. Res., 2015, 29: 529
25 汤洋, 赵颖, 张增光等. 氧化锌纳米柱阵列的水热合成及其性能 [J]. 材料研究学报, 2015, 29: 529
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.