|
|
电沉积氧化锌纳米柱的带隙和近带边发射蓝移 |
汤洋1,2( ) |
1.国家能源集团 绿色能源与建筑研究中心 北京 102211 2.北京低碳清洁能源研究院 北京 102211 |
|
Band Gap Energy and Near Band Edge Emission Blue Shifts of ZnO Nanorods Prepared by Electrodeposition |
TANG Yang1,2( ) |
1.Center for Green Energy and Architecture, China Energy Investment Corporation, Beijing 102211, China 2.National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China |
引用本文:
汤洋. 电沉积氧化锌纳米柱的带隙和近带边发射蓝移[J]. 材料研究学报, 2020, 34(11): 875-880.
Yang TANG.
Band Gap Energy and Near Band Edge Emission Blue Shifts of ZnO Nanorods Prepared by Electrodeposition[J]. Chinese Journal of Materials Research, 2020, 34(11): 875-880.
1 |
Jiang H, Jin Y M, Ye X, et al. Review of China's PV industry in the first half of 2020 and outlook in the second half of 2020 [J]. Solar Energy, 2020, 317(9): 5
|
1 |
江华, 金艳梅, 叶幸等. 2020年中国光伏产业上半年回顾与下半年展望 [J]. 太阳能, 2020, 317(9): 5
|
2 |
Xie L, Wang P, Li Z F, et al. Hydrothermal synthesis and photocatalytic activity of CuO/ZnO composite photocatalyst [J]. Chin. J. Mater. Res., 2019, 33: 728
|
2 |
谢亮, 王平, 李之锋等. CuO/ZnO复合光催化剂的制备和性能 [J]. 材料研究学报, 2019, 33: 728
|
3 |
Cao P, Bai Y. Preparation and photocatalytic properties of N-doped nano-ZnO/PVC composites [J]. Chin. J. Mater. Res., 2015, 29: 213
|
3 |
曹萍, 白越. N掺杂纳米ZnO/聚氯乙烯复合材料的制备和光催化性能 [J]. 材料研究学报, 2015, 29: 213
|
4 |
Chen Y, Zhang P, Shang Y H, et al. Controllable synthesis and photocatalytic activity of ZnO nano-cones with different aspect ratio [J]. Chin. J. Mater. Res., 2017, 31: 619
|
4 |
陈燕, 张萍, 尚永辉等. 不同纵横比ZnO纳米锥的可控合成及其光催化性能 [J]. 材料研究学报, 2017, 31: 619
|
5 |
Li G J, Wang Z, Wang Q, et al. Effect of oxidation time under high magnetic field on the microstructure and optical properties of oxidized co-doped ZnO films [J]. Acta Metall. Sin., 2014, 50: 1538
|
5 |
李国建, 王振, 王强等. 强磁场作用时间对氧化法制备的Co掺杂ZnO薄膜微观结构和光学性能的影响 [J]. 材料研究学报, 2014, 50: 1538
|
6 |
Hu Y, Xu S W, Li X, et al. Performance of self-powered UV photodetector based on ZnO/ZnS Heterojunction [J]. Chin. J. Mater. Res., 2019, 33: 523
|
6 |
胡轶, 徐思伟, 李想等. 自供能ZnO/ZnS异质结紫外探测器的性能研究 [J]. 材料研究学报, 2019, 33: 523
|
7 |
Zhao H X, Fang X, Wang Y B, et al. Formation of interface defects of ZnO/ZnS core-shell nanowires and its optical properties investigations [J]. Chin. Opt., 2019, 12: 872
|
7 |
赵海霞, 方铉, 王颜彬等. ZnO/ZnS核壳纳米线界面缺陷的形成及发光特性研究 [J]. 中国光学, 2019, 12: 872
|
8 |
Su S C, Yang X D, Hu C D. Fabrication of ZnO nanowall-network ultraviolet photodetector on Si substrates [J]. J. Semicond., 2011, 32: 074008
|
9 |
Sun X Y, Azad F, Wang S P, et al. Low-cost Flexible ZnO microwires array ultraviolet photodetector embedded in PAVL substrate [J]. Nano Res. Lett., 2018, 13: 277
|
10 |
Cao S Y, Zhang J J, Li W Q, et al. Near room temperature and large-area synthesis of ZnO/Cu2O heterojunction for photocatalytic properties [J]. Chem. Phys. Lett., 2018, 692: 14
|
11 |
Amany A, Wang D B, Wang J Z, et al. Enhanced the UV response of AlN coated ZnO nanorods photodetector [J] J. Alloys Compd., 2019, 776: 111
|
12 |
Kim D, Yun I, Kim H. Fabrication of rough Al doped ZnO films deposited by low pressure chemical vapor deposition for high efficiency thin film solar cells [J]. Curr. Appl. Phys., 2010, 10(): S459
|
13 |
Luka G, Witkowski B S, Wachnicki L. Electrical and mechanical stability of aluminum-doped ZnO films grown on flexible substrates by atomic layer deposition [J]. Mater. Sci. Eng., 2014, 186B: 15
|
14 |
Coman T, Ursu E L, Nica V, al el. Improving the uncommon (110) growing orientation of Al-doped ZnO thin films through sequential pulsed laser deposition [J]. Thin Solid Films, 2014, 571: 198
|
15 |
Duygulu N E, Kodolbas A O, Ekerim A. Effects of argon pressure and r.f. power on magnetron sputtered aluminum doped ZnO thin films [J]. J. Cryst. Growth, 2014, 394: 116
|
16 |
Kumar A, Huang N, Staedler T, et al. Mechanical characterization of aluminum doped zinc oxide (Al: ZnO) nanorods prepared by sol-gel method [J]. Appl. Surf. Sci., 2013, 265: 758
|
17 |
Chen Z W, Zhan G H, Wu Y P, et al. Sol-gel-hydrothermal synthesis and conductive properties of Al-doped ZnO nanopowders with controllable morphology [J]. J. Alloys Compd., 2014, 587: 692
|
18 |
Tang Y, Chen J. Optical band gap blue shift and stokes shift in Al-doped ZnO nanorods by electrodeposition [J]. Chin. J. Lumin., 2014, 35: 1165
|
18 |
汤洋, 陈颉. 电沉积掺铝氧化锌纳米柱的光学带隙蓝移与斯托克斯位移 [J]. 发光学报, 2014, 35: 1165
|
19 |
Tang Y, Guo L D, Zhang Z G, et al. Aluminium doping and optical property control of electrodeposited zinc oxide nanorods induced by ammonium nitrate [J]. Opt. Precis. Eng., 2015, 23: 1288
|
19 |
汤洋, 郭逦达, 张增光等. 硝酸铵诱导电沉积氧化锌纳米柱的铝掺杂及光学性质操控 [J]. 光学·精密工程, 2015, 23: 1288
|
20 |
Chen J, Ye H, Aé L, et al. Tapered aluminum-doped vertical zinc oxide nanorod arrays as light coupling layer for solar energy applications [J]. Sol. Energ. Mat. Sol., 2011, 95C: 1437
|
21 |
Guo L D, Tang Y, Chiang F K, et al. Density-controlled growth and passivation of ZnO nanorod arrays by electrodeposition [J]. Thin Solid Films, 2017, 638: 426
|
22 |
Tang Y, Chen J, Greiner D, et al. Fast growth of high work function and high-quality ZnO nanorods from an aqueous solution [J]. J. Phys. Chem., 2011, 115C: 5239
|
23 |
Cho S, Jung S H, Jang J W, et al. Simultaneous synthesis of Al-doped ZnO nanoneedles and zinc aluminum hydroxides through Use of a seed layer [J]. Cryst. Growth Des., 2008, 8: 4553
|
24 |
Mahamuni S, Borgohain K, Bendre B S, et al. Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots [J]. J. Appl. Phys., 1999, 85: 2861
|
25 |
Tang Y, Zhao Y, Zhang Z G, et al. Hydrothermal synthesis and properties of ZnO nanorod arrays [J] Chin. J. Mater. Res., 2015, 29: 529
|
25 |
汤洋, 赵颖, 张增光等. 氧化锌纳米柱阵列的水热合成及其性能 [J]. 材料研究学报, 2015, 29: 529
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|