|
|
退火温度对冷轧Ti-13V-3Al-0.5Cu形状记忆合金组织结构与马氏体相变的影响 |
孙馗善1, 李珺2, 孟祥龙1( ), 蔡伟1 |
1.哈尔滨工业大学材料科学与工程学院 哈尔滨 150006 2.东北林业大学机电工程学院 哈尔滨 150040 |
|
Effect of Annealing Temperature on Microstructure and Martensitic Transformation of Cold Rolled Ti-13V-3Al-0.5Cu Shape Memory Alloy |
SUN Kuishan1, LI Jun2, MENG Xianglong1( ), CAI Wei1 |
1. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150006, China 2. College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China |
引用本文:
孙馗善, 李珺, 孟祥龙, 蔡伟. 退火温度对冷轧Ti-13V-3Al-0.5Cu形状记忆合金组织结构与马氏体相变的影响[J]. 材料研究学报, 2020, 34(10): 721-729.
Kuishan SUN,
Jun LI,
Xianglong MENG,
Wei CAI.
Effect of Annealing Temperature on Microstructure and Martensitic Transformation of Cold Rolled Ti-13V-3Al-0.5Cu Shape Memory Alloy[J]. Chinese Journal of Materials Research, 2020, 34(10): 721-729.
[1] |
Mohd J J, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities [J]. Mater. Des., 2014, 56: 1078
|
[2] |
Bai J, Wang X L, Gu J L, et al. Martensitic transformation and crystal structure of Ni-Fe-Ga ferromagnetic shape memory alloys [J]. Chin. J. Mater. Res., 2014, 28: 881
|
[2] |
白静, 王新丽, 顾江龙等. Ni-Fe-Ga磁致形状记忆合金的马氏体相变和晶体结构的研究 [J]. 材料研究学报, 2014, 28: 881
|
[3] |
Xue P F, Zhang F, Li Y, et al. Progress in Ti-based shape memory alloys [J]. Chin. J. Rare Met., 2015, 39: 84
|
[3] |
薛朋飞, 张菲, 李岩等. 钛基形状记忆合金研究进展 [J]. 稀有金属, 2015, 39: 84
|
[4] |
Zhang X P, Zhang Y P. Recent advances in research and development of porous NiTi shape memory alloys [J]. Chin. J. Mater. Res., 2007, 21: 561
|
[4] |
张新平, 张宇鹏. 多孔NiTi形状记忆合金研究进展 [J]. 材料研究学报, 2007, 21: 561
|
[5] |
Li B Y, Rong L J, Li Y Y. Development of biomedical porous Ti-Ni shape memory alloys [J]. Chin. J. Mater. Res., 2000, 14: 561
|
[5] |
李丙运, 戎利建, 李依依. 生物医用多孔Ti-Ni形状记忆合金的研究进展 [J]. 材料研究学报, 2000, 14: 561
|
[6] |
Firstov G S, van Humbeeck J, Koval Y N. High-temperature shape memory alloys: Some recent developments [J]. Mater. Sci. Eng., 2004, 378A: 2
|
[7] |
Lee Pak J S, Lei C Y, Wayman C M. Atomic ordering in Ti-V-Al shape memory alloys [J]. Mater. Sci. Eng., 1991, 132A: 237
|
[8] |
Lei C Y, Lee Pak J S, Inoue H R P, et al. Shape memory behavior of Ti-V-Al alloys [A]. Proceedings of the International Conference of Martensitic Transformations (ICOMAT-92) [C]. Monterey, California, 1992: 539
|
[9] |
Lee Pak J S, Lei C Y, Wu M H, et al. Microstructures of athermal and stress-induced martensites of Ti-V-Al shape memory alloys [A]. Proceedings of the International Conference of Martensitic Transformations (ICOMAT-92) [C]. Monterey, California, 1992: 533
|
[10] |
Li W H. Martensitic transformation and shape memory effect of Ti-V-Al alloys [D]. Harbin: Harbin Institute of Technology, 2015
|
[10] |
李威瀚. Ti-V-Al合金的马氏体相变与形状记忆效应 [D]. 哈尔滨: 哈尔滨工业大学, 2015
|
[11] |
Yang Z Y, Zheng X H, Cai W. Martensitic transformation and shape memory effect of Ti-V-Al lightweight high-temperature shape memory alloys [J]. Scr. Mater., 2015, 99: 97
|
[12] |
Wang X W. Martensitic transformation and strain recovery properties of Ti-V-Al alloy with Sc addition [D]. Harbin: Harbin Institute of Technology, 2016
|
[12] |
王新旺. Sc掺杂Ti-V-Al形状记忆合金马氏体相变与应变恢复特性 [D]. 哈尔滨: 哈尔滨工业大学, 2016
|
[13] |
Yang Z Y, Zheng X H, Wu Y, et al. Martensitic transformation and shape memory behavior of Ti-V-Al-Fe lightweight shape memory alloys [J]. J. Alloys Compd., 2016, 680: 462
|
[14] |
Horiuchi Y, Nakayama K, Inamura T, et al. Effect of Cu addition on shape memory behavior of Ti-18 mol% Nb alloys [J]. Mater. Trans., 2007, 48: 414
|
[15] |
He Y H, Zhang Y Q, Jiang Y H, et al. Fabrication and characterization of superelastic Ti-Nb alloy enhanced with antimicrobial Cu via spark plasma sintering for biomedical applications [J]. J. Mater. Res., 2017, 32: 2510
|
[16] |
Sun K S, Yi X Y, Sun B, et al. Microstructure and mechanical properties of Ti-V-Al-Cu shape memory alloy by tailoring Cu content [J]. Mater. Sci. Eng., 2020, 771A: 138641
|
[17] |
Sun B, Meng X L, Gao Z Y, et al. Effect of annealing temperature on shape memory effect of cold-rolled Ti-16 at.%Nb alloy [J]. J. Alloys Compd., 2017, 715: 16
doi: 10.1016/j.jallcom.2017.04.275
|
[18] |
Sun B, Meng X L, Gao Z Y, et al. Study on the deformation mechanism of the martensitic Ti-16Nb high temperature shape memory alloy [J]. Mater. Sci. Eng., 2019, 742A: 590
|
[19] |
Chai Y W, Kim H Y, Hosoda H, et al. Self-accommodation in Ti-Nb shape memory alloys [J]. Acta Mater., 2009, 57: 4054
doi: 10.1016/j.actamat.2009.04.051
|
[20] |
Inamura T, Yamamoto Y, Hosoda H, et al. Crystallographic orientation and stress-amplitude dependence of damping in the martensite phase in textured Ti-Nb-Al shape memory alloy [J]. Acta Mater., 2010, 58: 2535
doi: 10.1016/j.actamat.2009.12.040
|
[21] |
Cui Y, Li Y, Luo K, et al. Microstructure and shape memory effect of Ti-20Zr-10Nb alloy [J]. Mater. Sci. Eng., 2010, 527A: 652
|
[22] |
Takahashi E, Sakurai T, Watanabe S, et al. Effect of heat treatment and Sn content on superelasticity in biocompatible TiNbSn alloys [J]. Mater. Trans., 2002, 43: 2978
doi: 10.2320/matertrans.43.2978
|
[23] |
Ping D H, Mitarai Y, Yin F X. Microstructure and shape memory behavior of a Ti-30Nb-3Pd alloy [J]. Scr. Mater., 2005, 52: 1287
doi: 10.1016/j.scriptamat.2005.02.029
|
[24] |
Karimzadeh M, Aboutalebi M R, Salehi M T, et al. Effects of thermomechanical treatments on the martensitic transformation and critical stress of Ti-50.2at. % Ni alloy [J]. J. Alloys Compd., 2015, 637: 171
doi: 10.1016/j.jallcom.2015.02.195
|
[25] |
Khelfaoui F, Guénin G. Influence of the recovery and recrystallization processes on the martensitic transformation of cold worked equiatomic Ti-Ni alloy [J]. Mater. Sci. Eng., 2003, 355A: 292
|
[26] |
Sharifi E M, Karimzadeh F, Kermanpur A. The effect of cold rolling and annealing on microstructure and tensile properties of the nanostructured Ni50Ti50 shape memory alloy [J]. Mater. Sci. Eng., 2014, 607A: 33
|
[27] |
Mahmud A S, Wu Z G, Yang H, et al. Effect of cold work and partial annealing on thermomechanical behaviour of Ti-50.5at%Ni [J]. Shap. Mem. Superelasticity, 2017, 3: 57
doi: 10.1007/s40830-017-0103-6
|
[28] |
Zheng X H, Sui J H, Zhang X, et al. Thermal stability and high-temperature shape memory effect of Ti-Ta-Zr alloy [J]. Scr. Mater., 2013, 68: 1008
doi: 10.1016/j.scriptamat.2013.03.008
|
[29] |
Xiong C Y, Xue P F, Sun B H, et al. Effect of annealing temperature on the microstructure and superelasticity of Ti-19Zr-10Nb-1Fe alloy [J]. Mater. Sci. Eng., 2017, 688A: 464
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|