| 
					引用本文:
						|  |  
    					|  |  
    					| 退火温度对冷轧Ti-13V-3Al-0.5Cu形状记忆合金组织结构与马氏体相变的影响 |  
						| 孙馗善1, 李珺2, 孟祥龙1(  ), 蔡伟1 |  
					| 1.哈尔滨工业大学材料科学与工程学院 哈尔滨 150006 2.东北林业大学机电工程学院 哈尔滨 150040
 |  
						|  |  
    					| Effect of Annealing Temperature on Microstructure and Martensitic Transformation of Cold Rolled Ti-13V-3Al-0.5Cu Shape Memory Alloy |  
						| SUN Kuishan1, LI Jun2, MENG Xianglong1(  ), CAI Wei1 |  
						| 1. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150006, China 2. College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China
 |  
								孙馗善, 李珺, 孟祥龙, 蔡伟. 退火温度对冷轧Ti-13V-3Al-0.5Cu形状记忆合金组织结构与马氏体相变的影响[J]. 材料研究学报, 2020, 34(10): 721-729.	
																												Kuishan SUN,
																								Jun LI,
																								Xianglong MENG,
																												Wei CAI. 
				Effect of Annealing Temperature on Microstructure and Martensitic Transformation of Cold Rolled Ti-13V-3Al-0.5Cu Shape Memory Alloy[J]. Chinese Journal of Materials Research, 2020, 34(10): 721-729.
 
					
						| 
								
									|  
          
          
            
             
			              
            
									            
									                
																																															
																| [1] | Mohd J J, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities [J]. Mater. Des., 2014, 56: 1078 |  
																| [2] | Bai J, Wang X L, Gu J L, et al. Martensitic transformation and crystal structure of Ni-Fe-Ga ferromagnetic shape memory alloys [J]. Chin. J. Mater. Res., 2014, 28: 881 |  
																| [2] | 白静, 王新丽, 顾江龙等. Ni-Fe-Ga磁致形状记忆合金的马氏体相变和晶体结构的研究 [J]. 材料研究学报, 2014, 28: 881 |  
																| [3] | Xue P F, Zhang F, Li Y, et al. Progress in Ti-based shape memory alloys [J]. Chin. J. Rare Met., 2015, 39: 84 |  
																| [3] | 薛朋飞, 张菲, 李岩等. 钛基形状记忆合金研究进展 [J]. 稀有金属, 2015, 39: 84 |  
																| [4] | Zhang X P, Zhang Y P. Recent advances in research and development of porous NiTi shape memory alloys [J]. Chin. J. Mater. Res., 2007, 21: 561 |  
																| [4] | 张新平, 张宇鹏. 多孔NiTi形状记忆合金研究进展 [J]. 材料研究学报, 2007, 21: 561 |  
																| [5] | Li B Y, Rong L J, Li Y Y. Development of biomedical porous Ti-Ni shape memory alloys [J]. Chin. J. Mater. Res., 2000, 14: 561 |  
																| [5] | 李丙运, 戎利建, 李依依. 生物医用多孔Ti-Ni形状记忆合金的研究进展 [J]. 材料研究学报, 2000, 14: 561 |  
																| [6] | Firstov G S, van Humbeeck J, Koval Y N. High-temperature shape memory alloys: Some recent developments [J]. Mater. Sci. Eng., 2004, 378A: 2 |  
																| [7] | Lee Pak J S, Lei C Y, Wayman C M. Atomic ordering in Ti-V-Al shape memory alloys [J]. Mater. Sci. Eng., 1991, 132A: 237 |  
																| [8] | Lei C Y, Lee Pak J S, Inoue H R P, et al. Shape memory behavior of Ti-V-Al alloys [A]. Proceedings of the International Conference of Martensitic Transformations (ICOMAT-92) [C]. Monterey, California, 1992: 539 |  
																| [9] | Lee Pak J S, Lei C Y, Wu M H, et al. Microstructures of athermal and stress-induced martensites of Ti-V-Al shape memory alloys [A]. Proceedings of the International Conference of Martensitic Transformations (ICOMAT-92) [C]. Monterey, California, 1992: 533 |  
																| [10] | Li W H. Martensitic transformation and shape memory effect of Ti-V-Al alloys [D]. Harbin: Harbin Institute of Technology, 2015 |  
																| [10] | 李威瀚. Ti-V-Al合金的马氏体相变与形状记忆效应 [D]. 哈尔滨: 哈尔滨工业大学, 2015 |  
																| [11] | Yang Z Y, Zheng X H, Cai W. Martensitic transformation and shape memory effect of Ti-V-Al lightweight high-temperature shape memory alloys [J]. Scr. Mater., 2015, 99: 97 |  
																| [12] | Wang X W. Martensitic transformation and strain recovery properties of Ti-V-Al alloy with Sc addition [D]. Harbin: Harbin Institute of Technology, 2016 |  
																| [12] | 王新旺. Sc掺杂Ti-V-Al形状记忆合金马氏体相变与应变恢复特性 [D]. 哈尔滨: 哈尔滨工业大学, 2016 |  
																| [13] | Yang Z Y, Zheng X H, Wu Y, et al. Martensitic transformation and shape memory behavior of Ti-V-Al-Fe lightweight shape memory alloys [J]. J. Alloys Compd., 2016, 680: 462 |  
																| [14] | Horiuchi Y, Nakayama K, Inamura T, et al. Effect of Cu addition on shape memory behavior of Ti-18 mol% Nb alloys [J]. Mater. Trans., 2007, 48: 414 |  
																| [15] | He Y H, Zhang Y Q, Jiang Y H, et al. Fabrication and characterization of superelastic Ti-Nb alloy enhanced with antimicrobial Cu via spark plasma sintering for biomedical applications [J]. J. Mater. Res., 2017, 32: 2510 |  
																| [16] | Sun K S, Yi X Y, Sun B, et al. Microstructure and mechanical properties of Ti-V-Al-Cu shape memory alloy by tailoring Cu content [J]. Mater. Sci. Eng., 2020, 771A: 138641 |  
																| [17] | Sun B, Meng X L, Gao Z Y, et al. Effect of annealing temperature on shape memory effect of cold-rolled Ti-16 at.%Nb alloy [J]. J. Alloys Compd., 2017, 715: 16 doi: 10.1016/j.jallcom.2017.04.275
 |  
																| [18] | Sun B, Meng X L, Gao Z Y, et al. Study on the deformation mechanism of the martensitic Ti-16Nb high temperature shape memory alloy [J]. Mater. Sci. Eng., 2019, 742A: 590 |  
																| [19] | Chai Y W, Kim H Y, Hosoda H, et al. Self-accommodation in Ti-Nb shape memory alloys [J]. Acta Mater., 2009, 57: 4054 doi: 10.1016/j.actamat.2009.04.051
 |  
																| [20] | Inamura T, Yamamoto Y, Hosoda H, et al. Crystallographic orientation and stress-amplitude dependence of damping in the martensite phase in textured Ti-Nb-Al shape memory alloy [J]. Acta Mater., 2010, 58: 2535 doi: 10.1016/j.actamat.2009.12.040
 |  
																| [21] | Cui Y, Li Y, Luo K, et al. Microstructure and shape memory effect of Ti-20Zr-10Nb alloy [J]. Mater. Sci. Eng., 2010, 527A: 652 |  
																| [22] | Takahashi E, Sakurai T, Watanabe S, et al. Effect of heat treatment and Sn content on superelasticity in biocompatible TiNbSn alloys [J]. Mater. Trans., 2002, 43: 2978 doi: 10.2320/matertrans.43.2978
 |  
																| [23] | Ping D H, Mitarai Y, Yin F X. Microstructure and shape memory behavior of a Ti-30Nb-3Pd alloy [J]. Scr. Mater., 2005, 52: 1287 doi: 10.1016/j.scriptamat.2005.02.029
 |  
																| [24] | Karimzadeh M, Aboutalebi M R, Salehi M T, et al. Effects of thermomechanical treatments on the martensitic transformation and critical stress of Ti-50.2at. % Ni alloy [J]. J. Alloys Compd., 2015, 637: 171 doi: 10.1016/j.jallcom.2015.02.195
 |  
																| [25] | Khelfaoui F, Guénin G. Influence of the recovery and recrystallization processes on the martensitic transformation of cold worked equiatomic Ti-Ni alloy [J]. Mater. Sci. Eng., 2003, 355A: 292 |  
																| [26] | Sharifi E M, Karimzadeh F, Kermanpur A. The effect of cold rolling and annealing on microstructure and tensile properties of the nanostructured Ni50Ti50 shape memory alloy [J]. Mater. Sci. Eng., 2014, 607A: 33 |  
																| [27] | Mahmud A S, Wu Z G, Yang H, et al. Effect of cold work and partial annealing on thermomechanical behaviour of Ti-50.5at%Ni [J]. Shap. Mem. Superelasticity, 2017, 3: 57 doi: 10.1007/s40830-017-0103-6
 |  
																| [28] | Zheng X H, Sui J H, Zhang X, et al. Thermal stability and high-temperature shape memory effect of Ti-Ta-Zr alloy [J]. Scr. Mater., 2013, 68: 1008 doi: 10.1016/j.scriptamat.2013.03.008
 |  
																| [29] | Xiong C Y, Xue P F, Sun B H, et al. Effect of annealing temperature on the microstructure and superelasticity of Ti-19Zr-10Nb-1Fe alloy [J]. Mater. Sci. Eng., 2017, 688A: 464 |  
             
												
											    	
											        	|  | Viewed |  
											        	|  |  |  
												        |  | Full text 
 | 
 
 |  
												        |  |  |  
												        |  | Abstract 
 | 
 |  
												        |  |  |  
												        |  | Cited |  |  
												        |  |  |  |  
													    |  | Shared |  |  
													    |  |  |  |  
													    |  | Discussed |  |  |  |  |