Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (4): 254-262    DOI: 10.11901/1005.3093.2019.393
  研究论文 本期目录 | 过刊浏览 |
干摩擦应变诱导板条马氏体固态非晶化的能量分析及其模型
尹存宏1,2, 李少波1,2, 梁益龙1,2,3,4,5()
1.贵州大学机械工程学院 贵阳 550025
2.贵州省材料结构与强度重点实验室 贵阳 550025
3.贵州大学材料与冶金学院 贵阳 550025
4.高性能金属结构材料与制造技术工程实验室 贵阳 550025
5.贵州大学金属材料与机械强度研究所 贵阳 550025
Energy Analysis and Corresponding Model of Friction Strain-induced Solid State Amorphization of Lath Martensite
YIN Cunhong1,2, LI Shaobo1,2, LIANG Yilong1,2,3,4,5()
1.College of Mechanical Engineering, Guizhou University, Guiyang 550025, China
2.Guizhou Key Laboratory for Mechanical Behavior and Microstructure of Materials, Guiyang 550025, China
3.College of Materials Science and Metallurgical Engineering, Guizhou University, Guiyang 550025, China
4.National & Local Joint Engineering Laboratory for High-Performance Metal Structure Materials and Advanced Manufacturing Technology, Guizhou University, Guiyang 550025, China
5.Institute of Metal Materials and Mechanical Strength, Guizhou University, Guiyang 550025, China
引用本文:

尹存宏, 李少波, 梁益龙. 干摩擦应变诱导板条马氏体固态非晶化的能量分析及其模型[J]. 材料研究学报, 2020, 34(4): 254-262.
Cunhong YIN, Shaobo LI, Yilong LIANG. Energy Analysis and Corresponding Model of Friction Strain-induced Solid State Amorphization of Lath Martensite[J]. Chinese Journal of Materials Research, 2020, 34(4): 254-262.

全文: PDF(16735 KB)   HTML
摘要: 

使用定点离子束切割制样(FIB)并根据透射电镜(TEM)表征,分析了板条马氏体钢干摩擦层内部板条马氏体协调塑性变形、演变为纳米层片结构并发生非晶化的全过程。结果表明,高密度位错缠结和缺陷集中是纳米层片结构的典型特征,这种结构产生的界面在高应变驱动下发生非晶化。这些非晶产物,为进一步细化磨屑和形成表面自润滑层提供结构条件。基于上述实验结果并结合摩擦学和材料学理论建立了干摩擦过程中的非晶化形核模型,计算了发生非晶化的热力条件和能量壁垒。结果表明,根据经典形核理论和晶体向非晶转变的吉布斯自由能壁垒计算公式所建立的干摩擦非晶化形核能量模型,可用于计算发生非晶化必需的临界位错密度值。根据对应的计算结果,可控制摩擦条件用干摩擦应变诱导板条马氏体的固态非晶化。

关键词 金属材料摩擦与磨损局部固态非晶化非晶形核能计算板条马氏体    
Abstract

The coordinated plastic deformation, nano-lamination and amorphization in the friction-induced layer of lath martensite steel were characterized via transmission electron microscopy (TEM) observation on samples prepared with fixed-point ion beam cutting (FIB). It was found that high-density dislocation and defects concentrated in nano-lamellar structures. The amorphous structures formed at interfaces between nano-lamellar structures in friction-induced layer under high strain. These amorphous products may be beneficial to the further refinement of the wear debris and thereby the formation of a protective layer. According to the above experimental results, an amorphous nucleation model in dry sliding friction process was established based on tribology- and material-theory, and then the thermal conditions and energy barriers for amorphization were calculated. The results show that the amorphous nucleation energy model in dry sliding friction established according to the classical nucleation theory and the Gibbs free energy barrier calculation formula can be used to calculate the necessary critical dislocation density value for amorphization. According to the calculation results, the solid-state amorphization of the lath martensite can be induced by the dry sliding friction strain under the optimal friction condition.

Key wordsmetallic materials    friction and wear    solid state amorphization    amorphous nucleation energy calculation    lath martensite
收稿日期: 2019-08-25     
ZTFLH:  TB31/TH117.1  
基金资助:国家自然科学基金(No. 51671060);贵州省联合基金(No. (2017)7244-5788)
作者简介: 尹存宏,男,1989年生,博士
图1  过渡区TEM样品的制备
图2  干摩擦过程中的自润滑现象
图3  在产生自润滑过程中的磨损机制演变
图4  自润滑层和纳米层片结构内部的高密度位错集中
图5  干摩擦过程中的固态非晶化
图6  非晶转变对应的吉布斯自由能和在不同摩擦应力下的非晶转变温度
图7  晶体向非晶转变的吉布斯自由能差
Physical parameterValue
G110(GPa)G=E21+ν81
a/nm0.2835
bpa2111
ρ/kg?m-37.75×103
M/kg?mol-15.6×10-2
表1  20CrNi2Mo钢材料的物理参数
[1] Ayyagari A H. Felix Wu, Harpreet Arora ,et al. Amorphous metallic alloys: pathways for enhanced wear and corrosion resistance [J]. JOM. 2017, 69(11): 2150
doi: 10.1007/s11837-017-2384-9
[2] Su Y S, Li S X, Lu S Y, et al. Deformation-induced amorphization and austenitization in white etching area of a martensite bearing steel under rolling contact fatigue [J]. Int. J. Fatigue. 2017, 105: 160
doi: 10.1016/j.ijfatigue.2017.08.022
[3] Kobayashi K, Shingu P H, Shimomura K. An amorphous phase in a splat-cooled Fe-3.8 wt%C alloy. [J]. Scripta Metallurgica. 1974, 8(11): 1317
doi: 10.1016/0036-9748(74)90352-4
[4] Cavin O B, Koch C C, Mckamey C G, et al. Preparation of ‘‘amorphous’’ Ni60Nb40 by mechanical alloying [J]. Appl. Phys. Lett. 1984, 43(11): 1017
doi: 10.1063/1.94213
[5] Katamoto T, Nakayama N, Shinjo T, et al. Mossbauer study of Fe/C multilayered films [J]. Journal of Physics F Metal Physics. 1988, 18(3): 443
doi: 10.1088/0305-4608/18/3/014
[6] Reyhane A, Mirzadeh Hamed, Ataie Abolghasem, et al. Amorphization and mechano-crystallization of high-energy ball milled Fe Ti alloys [J]. J. Non-Cryst. Solids. 2019, 520: 119466
doi: 10.1016/j.jnoncrysol.2019.119466
[7] Wang Y C, Zhang W, Wang L Y, et al. In situ TEM study of deformation-induced crystalline-to-amorphous transition in silicon [J]. NPG Asia Materials. 2016, 8(7): e291-e291
[8] Zhang L, Zhang H, Ren X, et al. Amorphous martensite in beta-Ti alloys [J]. Nat Commun. 2018, 9(1): 506
doi: 10.1038/s41467-018-02961-2 pmid: 29410411
[9] Romankov S, Park Y C, Shchetinin I V. Interatomic interactions and structural formations in WFeNi(Ti) and MoFeNi(Ti) layers under intense plastic deformation induced by ball collisions [J]. Appl. Surf. Sci. 2019, 488: 739
[10] Christine B, Talaat A, Shoji G, et al. Partially amorphous nanocomposite obtained from heavily deformed pearlitic steel [J]. Materials Science and Engineering: A. 2009, 502(1-2): 131
[11] Guan Z, Li Q, Zhang H, et al. Pressure induced transformation and subsequent amorphization of monoclinic Nb2O5 and its effect on optical properties [J]. J Phys Condens Matter. 2019, 31(10): 105401
doi: 10.1088/1361-648X/aaf9bd pmid: 30566910
[12] Yin C H, Liang Y L, Liang Y, et al. Formation of a self-lubricating layer by oxidation and solid-state amorphization of nano-lamellar microstructures during dry sliding wear tests [J]. Acta Mater, 2019, 166: 208
[13] Stevens R, Rainforth W M, Nutting J. Deformation structures induced by sliding contact [J]. Philos. Mag. A. 1992, 66(4): 621
doi: 10.1166/jnn.2011.3219 pmid: 21446536
[14] Dautzenberg J H, Zaat J H. Quantitative determination of deformation by sliding wear [J]. Wear. 1973, 23 9-19
[15] Wang X, Wei X C, Hong X L, et al. Formation of sliding friction-induced deformation layer with nanocrystalline structure in T10 steel against 20CrMnTi steel [J]. Appl. Surf. Sci. 2013, 280: 381
[16] Hirotaka K, Masato S, Nobuaki S. Friction-induced ultra-fine and nanocrystalline structures on metal surfaces in dry sliding [J]. Tribology International. 2010, 43(5-6): 925
[17] Shabashov V A, Korshunov L G, Chernenko N L, et al. Effect of contact stresses on the phase composition, strength, and tribological properties of nanocrystalline structures formed in steels and alloys under sliding friction [J]. Metal Science & Heat Treatment. 2008, 50(11-12): 583
[18] Tarassov S Y, Kolubaev A V. Effect of friction on subsurface layer microstructure in austenitic and martensitic steels [J]. Wear. 1999, 231(2): 228
doi: 10.1016/S0043-1648(99)00107-6
[19] Langford R M, Rogers M. In situ lift-out: steps to improve yield and a comparison with other FIB TEM sample preparation techniques [J]. Micron. 2008, 39(8): 1325
doi: 10.1016/j.micron.2008.02.006 pmid: 18555690
[20] Rigney D A. Comments on the sliding wear of metals [J]. Tribology International. 1997, 30(5): 361
doi: 10.1016/S0301-679X(96)00065-5
[21] Cohen M, Patel J R. Criterion for the action of applied stress in the martensitic transformation [J]. Acta Metall. 1953, 1(5): 531
doi: 10.1016/0001-6160(53)90083-2
[22] Andrémeyers M, Chang S N. Martensitic transformation induced by a tensile stress pulse in Fe-22.5 wt% Ni-4wt% Mn alloy [J]. Acta Metall. 1988, 36(4): 1085
doi: 10.1016/0001-6160(88)90162-9
[23] Lei L, Teresa C, Marisol K. Defect-induced solid state amorphization of molecular crystals [J]. J. Appl. Phys. 2012, 111(7): 073505
[24] Jaeger J C. moving sources of heat and the temperature of sliding contacts [J]. J. & Proc.roy.soc.new South Wales. 1942, 76
[25] Quinn T F J. Oxidational wear. Oxidational wear [J]. Wear. 1971, 18(5): 413
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.