|
|
干摩擦应变诱导板条马氏体固态非晶化的能量分析及其模型 |
尹存宏1,2, 李少波1,2, 梁益龙1,2,3,4,5( ) |
1.贵州大学机械工程学院 贵阳 550025 2.贵州省材料结构与强度重点实验室 贵阳 550025 3.贵州大学材料与冶金学院 贵阳 550025 4.高性能金属结构材料与制造技术工程实验室 贵阳 550025 5.贵州大学金属材料与机械强度研究所 贵阳 550025 |
|
Energy Analysis and Corresponding Model of Friction Strain-induced Solid State Amorphization of Lath Martensite |
YIN Cunhong1,2, LI Shaobo1,2, LIANG Yilong1,2,3,4,5( ) |
1.College of Mechanical Engineering, Guizhou University, Guiyang 550025, China 2.Guizhou Key Laboratory for Mechanical Behavior and Microstructure of Materials, Guiyang 550025, China 3.College of Materials Science and Metallurgical Engineering, Guizhou University, Guiyang 550025, China 4.National & Local Joint Engineering Laboratory for High-Performance Metal Structure Materials and Advanced Manufacturing Technology, Guizhou University, Guiyang 550025, China 5.Institute of Metal Materials and Mechanical Strength, Guizhou University, Guiyang 550025, China |
引用本文:
尹存宏, 李少波, 梁益龙. 干摩擦应变诱导板条马氏体固态非晶化的能量分析及其模型[J]. 材料研究学报, 2020, 34(4): 254-262.
Cunhong YIN,
Shaobo LI,
Yilong LIANG.
Energy Analysis and Corresponding Model of Friction Strain-induced Solid State Amorphization of Lath Martensite[J]. Chinese Journal of Materials Research, 2020, 34(4): 254-262.
[1] |
Ayyagari A H. Felix Wu, Harpreet Arora ,et al. Amorphous metallic alloys: pathways for enhanced wear and corrosion resistance [J]. JOM. 2017, 69(11): 2150
doi: 10.1007/s11837-017-2384-9
|
[2] |
Su Y S, Li S X, Lu S Y, et al. Deformation-induced amorphization and austenitization in white etching area of a martensite bearing steel under rolling contact fatigue [J]. Int. J. Fatigue. 2017, 105: 160
doi: 10.1016/j.ijfatigue.2017.08.022
|
[3] |
Kobayashi K, Shingu P H, Shimomura K. An amorphous phase in a splat-cooled Fe-3.8 wt%C alloy. [J]. Scripta Metallurgica. 1974, 8(11): 1317
doi: 10.1016/0036-9748(74)90352-4
|
[4] |
Cavin O B, Koch C C, Mckamey C G, et al. Preparation of ‘‘amorphous’’ Ni60Nb40 by mechanical alloying [J]. Appl. Phys. Lett. 1984, 43(11): 1017
doi: 10.1063/1.94213
|
[5] |
Katamoto T, Nakayama N, Shinjo T, et al. Mossbauer study of Fe/C multilayered films [J]. Journal of Physics F Metal Physics. 1988, 18(3): 443
doi: 10.1088/0305-4608/18/3/014
|
[6] |
Reyhane A, Mirzadeh Hamed, Ataie Abolghasem, et al. Amorphization and mechano-crystallization of high-energy ball milled Fe Ti alloys [J]. J. Non-Cryst. Solids. 2019, 520: 119466
doi: 10.1016/j.jnoncrysol.2019.119466
|
[7] |
Wang Y C, Zhang W, Wang L Y, et al. In situ TEM study of deformation-induced crystalline-to-amorphous transition in silicon [J]. NPG Asia Materials. 2016, 8(7): e291-e291
|
[8] |
Zhang L, Zhang H, Ren X, et al. Amorphous martensite in beta-Ti alloys [J]. Nat Commun. 2018, 9(1): 506
doi: 10.1038/s41467-018-02961-2
pmid: 29410411
|
[9] |
Romankov S, Park Y C, Shchetinin I V. Interatomic interactions and structural formations in WFeNi(Ti) and MoFeNi(Ti) layers under intense plastic deformation induced by ball collisions [J]. Appl. Surf. Sci. 2019, 488: 739
|
[10] |
Christine B, Talaat A, Shoji G, et al. Partially amorphous nanocomposite obtained from heavily deformed pearlitic steel [J]. Materials Science and Engineering: A. 2009, 502(1-2): 131
|
[11] |
Guan Z, Li Q, Zhang H, et al. Pressure induced transformation and subsequent amorphization of monoclinic Nb2O5 and its effect on optical properties [J]. J Phys Condens Matter. 2019, 31(10): 105401
doi: 10.1088/1361-648X/aaf9bd
pmid: 30566910
|
[12] |
Yin C H, Liang Y L, Liang Y, et al. Formation of a self-lubricating layer by oxidation and solid-state amorphization of nano-lamellar microstructures during dry sliding wear tests [J]. Acta Mater, 2019, 166: 208
|
[13] |
Stevens R, Rainforth W M, Nutting J. Deformation structures induced by sliding contact [J]. Philos. Mag. A. 1992, 66(4): 621
doi: 10.1166/jnn.2011.3219
pmid: 21446536
|
[14] |
Dautzenberg J H, Zaat J H. Quantitative determination of deformation by sliding wear [J]. Wear. 1973, 23 9-19
|
[15] |
Wang X, Wei X C, Hong X L, et al. Formation of sliding friction-induced deformation layer with nanocrystalline structure in T10 steel against 20CrMnTi steel [J]. Appl. Surf. Sci. 2013, 280: 381
|
[16] |
Hirotaka K, Masato S, Nobuaki S. Friction-induced ultra-fine and nanocrystalline structures on metal surfaces in dry sliding [J]. Tribology International. 2010, 43(5-6): 925
|
[17] |
Shabashov V A, Korshunov L G, Chernenko N L, et al. Effect of contact stresses on the phase composition, strength, and tribological properties of nanocrystalline structures formed in steels and alloys under sliding friction [J]. Metal Science & Heat Treatment. 2008, 50(11-12): 583
|
[18] |
Tarassov S Y, Kolubaev A V. Effect of friction on subsurface layer microstructure in austenitic and martensitic steels [J]. Wear. 1999, 231(2): 228
doi: 10.1016/S0043-1648(99)00107-6
|
[19] |
Langford R M, Rogers M. In situ lift-out: steps to improve yield and a comparison with other FIB TEM sample preparation techniques [J]. Micron. 2008, 39(8): 1325
doi: 10.1016/j.micron.2008.02.006
pmid: 18555690
|
[20] |
Rigney D A. Comments on the sliding wear of metals [J]. Tribology International. 1997, 30(5): 361
doi: 10.1016/S0301-679X(96)00065-5
|
[21] |
Cohen M, Patel J R. Criterion for the action of applied stress in the martensitic transformation [J]. Acta Metall. 1953, 1(5): 531
doi: 10.1016/0001-6160(53)90083-2
|
[22] |
Andrémeyers M, Chang S N. Martensitic transformation induced by a tensile stress pulse in Fe-22.5 wt% Ni-4wt% Mn alloy [J]. Acta Metall. 1988, 36(4): 1085
doi: 10.1016/0001-6160(88)90162-9
|
[23] |
Lei L, Teresa C, Marisol K. Defect-induced solid state amorphization of molecular crystals [J]. J. Appl. Phys. 2012, 111(7): 073505
|
[24] |
Jaeger J C. moving sources of heat and the temperature of sliding contacts [J]. J. & Proc.roy.soc.new South Wales. 1942, 76
|
[25] |
Quinn T F J. Oxidational wear. Oxidational wear [J]. Wear. 1971, 18(5): 413
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|